299 research outputs found

    A New Single-blade Based Hybrid CFD Method for Hovering and Forward-flight Rotor Computation

    Get PDF
    AbstractA hybrid Euler/full potential/Lagrangian wake method, based on single-blade simulation, for predicting unsteady aerodynamic flow around helicopter rotors in hover and forward flight has been developed. In this method, an Euler solver is used to model the near wake evolution and transonic flow phenomena in the vicinity of the blade, and a full potential equation (FPE) is used to model the isentropic potential flow region far away from the rotor, while the wake effects of other blades and the far wake are incorporated into the flow solution as an induced inflow distribution using a Lagrangian based wake analysis. To further reduce the execution time, the computational fluid dynamics (CFD) solution and rotor wake analysis (including induced velocity update) are conducted parallelly, and a load balancing strategy is employed to account for the information exchange between two solvers. By the developed method, several hover and forward-flight cases on Caradonna-Tung and Helishape 7A rotors are performed. Good agreements of the loadings on blade surface with available measured data demonstrate the validation of the method. Also, the CPU time required for different computation runs is compared in the paper, and the results show that the present hybrid method is superior to conventional CFD method in time cost, and will be more efficient with the number of blades increasing

    Oriented growth during recrystallization revisited in three dimensions

    Get PDF
    International audienceThe two surfaces of a 40% cold-rolled tricrystal of aluminium were scratched to stimulate recrystallization nucleation. Serial sectioning combined with electron backscatter diffraction was used to characterize the nuclei in three dimensions. It was found that the largest nuclei have a 40 degrees relationship to the matrix, but there are also many nuclei of this orientation relationship which do not grow to large sizes. It is shown that local variations in the deformation microstructure determine where preferential growth occurs. (C) 2013 The Authors. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved

    Optimizing plant transporter expression in Xenopus oocytes

    Get PDF
    BACKGROUND: Rapid improvements in DNA synthesis technology are revolutionizing gene cloning and the characterization of their encoded proteins. Xenopus laevis oocytes are a commonly used heterologous system for the expression and functional characterization of membrane proteins. For many plant proteins, particularly transporters, low levels of expression can limit functional activity in these cells making it difficult to characterize the protein. Improvements in synthetic DNA technology now make it quick, easy and relatively cheap to optimize the codon usage of plant cDNAs for Xenopus. We have tested if this optimization process can improve the functional activity of a two-component plant nitrate transporter assayed in oocytes. RESULTS: We used the generally available software (http://www.kazusa.or.jp/codon/; http://genomes.urv.es/OPTIMIZER/) to predict a DNA sequence for the plant gene that is better suited for Xenopus laevis. Rice OsNAR2.1 and OsNRT2.3a DNA optimized sequences were commercially synthesized for Xenopus expression. The template DNA was used to synthesize cRNA using a commercially available kit. Oocytes were injected with cRNA mixture of optimized and original OsNAR2.1 and OsNRT2.3a. Oocytes injected with cRNA obtained from using the optimized DNA template could accumulate significantly more NO(3)(-) than the original genes after 16 h incubation in 0.5 mM Na(15)NO(3). Two-electrode voltage clamp analysis of the oocytes confirmed that the codon optimized template resulted in significantly larger currents when compared with the original rice cDNA. CONCLUSION: The functional activity of a rice high affinity nitrate transporter in oocytes was improved by DNA codon optimization of the genes. This methodology offers the prospect for improved expression and better subsequent functional characterization of plant proteins in the Xenopus oocyte system

    HSF1 overexpression enhances oncolytic effect of replicative adenovirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>E1B55kD deleted oncolytic adenovirus was designed to achieve cancer-specific cytotoxicity, but showed limitations in clinical study. To find a method to increase its efficacy, we investigated the correlation between oncolytic effect of such oncolytic adenovirus Adel55 and intracellular heat shock transcription factor 1 (HSF1) activity.</p> <p>Methods</p> <p>In the present study, human breast cancer cell line Bcap37 was stably transfected with constitutively active HSF1 (cHSF1) or HSF1 specific siRNA (HSF1i) to establish increased or decreased HSF1 expression levels. Cytotoxicity of Adel55 was analyzed in these cell lines <it>in vitro </it>and <it>in vivo</it>. Furthermore, Adel55 incorporated with cHSF1 (Adel55-cHSF1) was used to treat various tumor xenografts.</p> <p>Results</p> <p>Adel55 could achieve more efficient oncolysis in cHSF1 transfected Bcap37 cells, both <it>in vitro </it>and <it>in vivo</it>. However, inhibition of HSF1 expression by HSF1i could rescue Bcap37 cell line from oncolysis by Adel55. A time course study of viral replication established a correlation between higher replication of Adel55 and cytolysis or tumor growth inhibition. Then, we constructed Adel55-cHSF1 for tumor gene therapy and demonstrated that it is more potent than Adel55 itself in oncolysis and replication in both Bcap37 and SW620 xenografts.</p> <p>Conclusions</p> <p>cHSF1 enhances the Adel55 cell-killing potential through increasing the viral replication and is a potential therapeutic implication to augment the potential of E1B55kD deleted oncolytic adenovirus by increasing its burst.</p

    An Autonomous Path Planning Method for Unmanned Aerial Vehicle based on A Tangent Intersection and Target Guidance Strategy

    Full text link
    Unmanned aerial vehicle (UAV) path planning enables UAVs to avoid obstacles and reach the target efficiently. To generate high-quality paths without obstacle collision for UAVs, this paper proposes a novel autonomous path planning algorithm based on a tangent intersection and target guidance strategy (APPATT). Guided by a target, the elliptic tangent graph method is used to generate two sub-paths, one of which is selected based on heuristic rules when confronting an obstacle. The UAV flies along the selected sub-path and repeatedly adjusts its flight path to avoid obstacles through this way until the collision-free path extends to the target. Considering the UAV kinematic constraints, the cubic B-spline curve is employed to smooth the waypoints for obtaining a feasible path. Compared with A*, PRM, RRT and VFH, the experimental results show that APPATT can generate the shortest collision-free path within 0.05 seconds for each instance under static environments. Moreover, compared with VFH and RRTRW, APPATT can generate satisfactory collision-free paths under uncertain environments in a nearly real-time manner. It is worth noting that APPATT has the capability of escaping from simple traps within a reasonable time

    Laminated Ti-Al composites: Processing, structure and strength

    Get PDF
    Laminated Ti-Al composite sheets with different layer thickness ratios have been fabricated through hot pressing followed by multi-pass hot rolling at 500 °C.The laminated sheets show strong bonding with intermetallic interface layers of nanoscale thickness between the layers of Ti and Al. The mechanical properties of the composites with different volume fractions of Al from 10% to 67% show a good combination of strength and ductility. A constraint strain in the hot-rolled laminated structure between the hard and soft phases introduces an elastic-plastic deformation stage, which becomes more pronounced as the volume fraction of Al decreases. Moreover, the thin intermetallic interface layer may also contribute to the strength of the composites, and this effect increases with increasing volume fraction of the interface layer
    • …
    corecore