645,286 research outputs found

    Time evolution of Wigner function in laser process derived by entangled state representation

    Full text link
    Evaluating the Wigner function of quantum states in the entangled state representation is introduced, based on which we present a new approach for deriving time evolution formula of Wigner function in laser process. Application of this fomula to calculating time evolution of photon number is also presented, as an example, the case when the initial state is photon-added coherent state is discussed.Comment: 6 pages, revtex

    Adaptive robust variable selection

    Full text link
    Heavy-tailed high-dimensional data are commonly encountered in various scientific fields and pose great challenges to modern statistical analysis. A natural procedure to address this problem is to use penalized quantile regression with weighted L1L_1-penalty, called weighted robust Lasso (WR-Lasso), in which weights are introduced to ameliorate the bias problem induced by the L1L_1-penalty. In the ultra-high dimensional setting, where the dimensionality can grow exponentially with the sample size, we investigate the model selection oracle property and establish the asymptotic normality of the WR-Lasso. We show that only mild conditions on the model error distribution are needed. Our theoretical results also reveal that adaptive choice of the weight vector is essential for the WR-Lasso to enjoy these nice asymptotic properties. To make the WR-Lasso practically feasible, we propose a two-step procedure, called adaptive robust Lasso (AR-Lasso), in which the weight vector in the second step is constructed based on the L1L_1-penalized quantile regression estimate from the first step. This two-step procedure is justified theoretically to possess the oracle property and the asymptotic normality. Numerical studies demonstrate the favorable finite-sample performance of the AR-Lasso.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1191 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore