19 research outputs found

    Clinical and Demographic Factors Associated with COVID-19, Severe COVID-19, and SARS-CoV-2 Infection in Adults: A Secondary Cross-Protocol Analysis of 4 Randomized Clinical Trials

    Get PDF
    Importance: Current data identifying COVID-19 risk factors lack standardized outcomes and insufficiently control for confounders. Objective: To identify risk factors associated with COVID-19, severe COVID-19, and SARS-CoV-2 infection. Design, Setting, and Participants: This secondary cross-protocol analysis included 4 multicenter, international, randomized, blinded, placebo-controlled, COVID-19 vaccine efficacy trials with harmonized protocols established by the COVID-19 Prevention Network. Individual-level data from participants randomized to receive placebo within each trial were combined and analyzed. Enrollment began July 2020 and the last data cutoff was in July 2021. Participants included adults in stable health, at risk for SARS-CoV-2, and assigned to the placebo group within each vaccine trial. Data were analyzed from April 2022 to February 2023. Exposures: Comorbid conditions, demographic factors, and SARS-CoV-2 exposure risk at the time of enrollment. Main Outcomes and Measures: Coprimary outcomes were COVID-19 and severe COVID-19. Multivariate Cox proportional regression models estimated adjusted hazard ratios (aHRs) and 95% CIs for baseline covariates, accounting for trial, region, and calendar time. Secondary outcomes included severe COVID-19 among people with COVID-19, subclinical SARS-CoV-2 infection, and SARS-CoV-2 infection. Results: A total of 57692 participants (median [range] age, 51 [18-95] years; 11720 participants [20.3%] aged ≥65 years; 31058 participants [53.8%] assigned male at birth) were included. The analysis population included 3270 American Indian or Alaska Native participants (5.7%), 7849 Black or African American participants (13.6%), 17678 Hispanic or Latino participants (30.6%), and 40745 White participants (70.6%). Annualized incidence was 13.9% (95% CI, 13.3%-14.4%) for COVID-19 and 2.0% (95% CI, 1.8%-2.2%) for severe COVID-19. Factors associated with increased rates of COVID-19 included workplace exposure (high vs low: aHR, 1.35 [95% CI, 1.16-1.58]; medium vs low: aHR, 1.41 [95% CI, 1.21-1.65]; P <.001) and living condition risk (very high vs low risk: aHR, 1.41 [95% CI, 1.21-1.66]; medium vs low risk: aHR, 1.19 [95% CI, 1.08-1.32]; P <.001). Factors associated with decreased rates of COVID-19 included previous SARS-CoV-2 infection (aHR, 0.13 [95% CI, 0.09-0.19]; P <.001), age 65 years or older (aHR vs age <65 years, 0.57 [95% CI, 0.50-0.64]; P <.001) and Black or African American race (aHR vs White race, 0.78 [95% CI, 0.67-0.91]; P =.002). Factors associated with increased rates of severe COVID-19 included race (American Indian or Alaska Native vs White: aHR, 2.61 [95% CI, 1.85-3.69]; multiracial vs White: aHR, 2.19 [95% CI, 1.50-3.20]; P <.001), diabetes (aHR, 1.54 [95% CI, 1.14-2.08]; P =.005) and at least 2 comorbidities (aHR vs none, 1.39 [95% CI, 1.09-1.76]; P =.008). In analyses restricted to participants who contracted COVID-19, increased severe COVID-19 rates were associated with age 65 years or older (aHR vs <65 years, 1.75 [95% CI, 1.32-2.31]; P <.001), race (American Indian or Alaska Native vs White: aHR, 1.98 [95% CI, 1.38-2.83]; Black or African American vs White: aHR, 1.49 [95% CI, 1.03-2.14]; multiracial: aHR, 1.81 [95% CI, 1.21-2.69]; overall P =.001), body mass index (aHR per 1-unit increase, 1.03 [95% CI, 1.01-1.04]; P =.001), and diabetes (aHR, 1.85 [95% CI, 1.37-2.49]; P <.001). Previous SARS-CoV-2 infection was associated with decreased severe COVID-19 rates (aHR, 0.04 [95% CI, 0.01-0.14]; P <.001). Conclusions and Relevance: In this secondary cross-protocol analysis of 4 randomized clinical trials, exposure and demographic factors had the strongest associations with outcomes; results could inform mitigation strategies for SARS-CoV-2 and viruses with comparable epidemiological characteristics

    Rapid Development of an Integrated Network Infrastructure to Conduct Phase 3 COVID-19 Vaccine Trials

    Get PDF
    Importance: The COVID-19 pandemic has caused millions of infections and deaths and resulted in unprecedented international public health social and economic crises. As SARS-CoV-2 spread across the globe and its impact became evident, the development of safe and effective vaccines became a priority. Outlining the processes used to establish and support the conduct of the phase 3 randomized clinical trials that led to the rapid emergency use authorization and approval of several COVID-19 vaccines is of major significance for current and future pandemic response efforts. Observations: To support the rapid development of vaccines for the US population and the rest of the world, the National Institute of Allergy and Infectious Diseases established the COVID-19 Prevention Network (CoVPN) to assist in the coordination and implementation of phase 3 efficacy trials for COVID-19 vaccine candidates and monoclonal antibodies. By bringing together multiple networks, CoVPN was able to draw on existing clinical and laboratory infrastructure, community partnerships, and research expertise to quickly pivot clinical trial sites to conduct COVID-19 vaccine trials as soon as the investigational products were ready for phase 3 testing. The mission of CoVPN was to operationalize phase 3 vaccine trials using harmonized protocols, laboratory assays, and a single data and safety monitoring board to oversee the various studies. These trials, while staggered in time of initiation, overlapped in time and course of conduct and ultimately led to the successful completion of multiple studies and US Food and Drug Administration-licensed or -authorized vaccines, the first of which was available to the public less than 1 year from the discovery of the virus. Conclusions and Relevance: This Special Communication describes the design, geographic distribution, and underlying principles of conduct of these efficacy trials and summarizes data from 136 382 prospectively followed-up participants, including more than 2500 with documented COVID-19. These successful efforts can be replicated for other important research initiatives and point to the importance of investments in clinical trial infrastructure integral to pandemic preparedness

    The burden of respiratory syncytial virus (RSV) associated acute lower respiratory infections in children with Down syndrome: A systematic review and meta-analysis

    No full text
    Background Acute lower respiratory tract infections (ALRIs) caused by respiratory syncytial virus (RSV) are a leading cause of hospitalization in infants. Numerous risk factors have been identified in the aetiology of severe RSV-associated ALRI necessitating hospitalisation, including prematurity and congenital heart disease. Down syndrome (DS), a common genetic disorder associated with congenital and dysmorphic features, has recently been identified as an independent risk factor for RSV-associated ALRI requiring hospitalisation; however, the disease burden of RSV-associated ALRI in this population has not yet been established. Similarly, the impact of DS as an independent risk factor has not yet been quantified. We aimed therefore to estimate the incidence of admissions in children with DS, and by comparing this with unaffected children, to quantify the risk of DS independent of other risk factors. Methods A systematic review of the existing literature published between 1995 and March 1, 2017 was performed to quantify the incidence of hospitalisation due to RSV-associated ALRI in children with DS. Meta-analyses were performed on extracted data using STATA statistical software, and hospitalisation rates for children with and without DS under the age of 2 were calculated. Findings 5 articles were ultimately deemed eligible for analyses. Analyses were limited to children under the age of 2 years. We calculated the hospitalisation rate for children with DS in this age group to be 117.6 per 1000 child-years (95% CI 67.4-205.2), vs a rate of 15.2 per 1000 child-years (95% CI 8.3-27.6) in unaffected children. This indicates DS contributes to a 6.8 (95% CI 5.5-8.4) fold increase in the relative risk of hospitalisation for RSV-associated ALRI. Interpretation Though limited by a small number of articles, this review found sufficient evidence to conclude DS was a significant independent risk factor for the development of severe RSV-associated ALRI requiring hospitalisation. Further studies are needed to define the impact of DS in conjunction with other comorbidities on the risk of severe RSV infection. Determining benefits of immunoprophylaxis or future vaccines against RSV in this at-risk population is warranted

    AS03-adjuvanted versus non-adjuvanted inactivated trivalent influenza vaccine against seasonal influenza in elderly people: a phase 3 randomised trial

    No full text
    Item does not contain fulltextBACKGROUND: We aimed to compare AS03-adjuvanted inactivated trivalent influenza vaccine (TIV) with non-adjuvanted TIV for seasonal influenza prevention in elderly people. METHODS: We did a randomised trial in 15 countries worldwide during the 2008-09 (year 1) and 2009-10 (year 2) influenza seasons. Eligible participants aged at least 65 years who were not in hospital or bedridden and were without acute illness were randomly assigned (1:1) to receive either AS03-adjuvanted TIV or non-adjuvanted TIV. Randomisation was done in an internet-based system, with a blocking scheme and stratification by age (65-74 years and 75 years or older). Participants were scheduled to receive one vaccine in each year, and remained in the same group in years 1 and 2. Unmasked personnel prepared and gave the vaccines, but participants and individuals assessing any study endpoint were masked. The coprimary objectives were to assess the relative efficacy of the vaccines and lot-to-lot consistency of the AS03-adjuvanted TIV (to be reported elsewhere). For the first objective, the primary endpoint was relative efficacy of the vaccines for prevention of influenza A (excluding A H1N1 pdm09) or B, or both, that was confirmed by PCR analysis in year 1 (lower limit of two-sided 95% CI had to be greater than zero to establish superiority). From Nov 15, to April 30, in both years, participants were monitored by telephone or site contact and home visits every week or 2 weeks to identify cases of influenza-like illness. After onset of suspected cases, we obtained nasal and throat swabs to identify influenza RNA with real-time PCR. Efficacy analyses were done per protocol. This trial is registered with ClinicalTrials.gov, number NCT00753272. FINDINGS: We enrolled 43 802 participants, of whom 21 893 were assigned to and received the AS03-adjuvanted TIV and 21 802 the non-adjuvanted TIV in year 1. In the year 1 efficacy cohort, fewer participants given AS03-adjuvanted than non-adjuvanted TIV were infected with influenza A or B, or both (274 [1.27%, 95% CI 1.12-1.43] of 21 573 vs 310 [1.44%, 1.29-1.61] of 21 482; relative efficacy 12.11%, 95% CI -3.40 to 25.29; superiority not established). Fewer participants in the year 1 efficacy cohort given AS03-adjuvanted TIV than non-adjuvanted TIV were infected with influenza A (224 [1.04%, 95% CI 0.91-1.18] vs 270 [1.26, 1.11-1.41]; relative efficacy 17.53%, 95% CI 1.55-30.92) and influenza A H3N2 (170 [0.79, 0.67-0.92] vs 205 [0.95, 0.83-1.09]; post-hoc analysis relative efficacy 22.0%, 95% CI 5.68-35.49). INTERPRETATION: AS03-adjuvanted TIV has a higher efficacy for prevention of some subtypes of influenza than does a non-adjuvanted TIV. Future influenza vaccine studies in elderly people should be based on subtype or lineage-specific endpoints. FUNDING: GlaxoSmithKline Biologicals SA

    The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates

    No full text
    The global burden of disease caused by respiratory syncytial virus (RSV) is increasingly recognised, not only in infants, but also in older adults (aged ≥65 years). Advances in knowledge of the structural biology of the RSV surface fusion glycoprotein have revolutionised RSV vaccine development by providing a new target for preventive interventions. The RSV vaccine landscape has rapidly expanded to include 19 vaccine candidates and monoclonal antibodies (mAbs) in clinical trials, reflecting the urgency of reducing this global health problem and hence the prioritisation of RSV vaccine development. The candidates include mAbs and vaccines using four approaches: (1) particle-based, (2) live-attenuated or chimeric, (3) subunit, (4) vector-based. Late-phase RSV vaccine trial failures highlight gaps in knowledge regarding immunological protection and provide lessons for future development. In this Review, we highlight promising new approaches for RSV vaccine design and provide a comprehensive overview of RSV vaccine candidates and mAbs in clinical development to prevent one of the most common and severe infectious diseases in young children and older adults worldwide. © 2018 World Health Organization. Published by Elsevier Ltd/Inc/BV. All rights reserved
    corecore