880 research outputs found
A Note on the Rotationally Symmetric SO(4) Euler Rigid Body
We consider an SO(4) Euler rigid body with two 'inertia momenta' coinciding.
We study it from the point of view of bihamiltonian geometry. We show how to
algebraically integrate it by means of the method of separation of variables.Comment: This is a contribution to the Vadim Kuznetsov Memorial Issue on
Integrable Systems and Related Topics, published in SIGMA (Symmetry,
Integrability and Geometry: Methods and Applications) at
http://www.emis.de/journals/SIGMA
On a Poisson reduction for Gel'fand--Zakharevich manifolds
We formulate and discuss a reduction theorem for Poisson pencils associated
with a class of integrable systems, defined on bi-Hamiltonian manifolds,
recently studied by Gel'fand and Zakharevich. The reduction procedure is
suggested by the bi-Hamiltonian approach to the Separation of Variables
problem.Comment: Latex, 14 pages. Proceeding of the Conference "Multi-Hamiltonian
Structures: Geometric and Algebraic Aspects". August 9-18, 2001 Bedlewo,
Poland. To appear in ROM
Dirac reduction revisited
The procedure of Dirac reduction of Poisson operators on submanifolds is
discussed within a particularly useful special realization of the general
Marsden-Ratiu reduction procedure. The Dirac classification of constraints on
'first-class' constraints and 'second-class' constraints is reexamined.Comment: This is a revised version of an article published in J. Nonlinear
Math. Phys. vol. 10, No. 4, (2003), 451-46
Algebraic properties of Manin matrices 1
We study a class of matrices with noncommutative entries, which were first
considered by Yu. I. Manin in 1988 in relation with quantum group theory. They
are defined as "noncommutative endomorphisms" of a polynomial algebra. More
explicitly their defining conditions read: 1) elements in the same column
commute; 2) commutators of the cross terms are equal: (e.g. ). The basic claim
is that despite noncommutativity many theorems of linear algebra hold true for
Manin matrices in a form identical to that of the commutative case. Moreover in
some examples the converse is also true. The present paper gives a complete
list and detailed proofs of algebraic properties of Manin matrices known up to
the moment; many of them are new. In particular we present the formulation in
terms of matrix (Leningrad) notations; provide complete proofs that an inverse
to a M.m. is again a M.m. and for the Schur formula for the determinant of a
block matrix; we generalize the noncommutative Cauchy-Binet formulas discovered
recently [arXiv:0809.3516], which includes the classical Capelli and related
identities. We also discuss many other properties, such as the Cramer formula
for the inverse matrix, the Cayley-Hamilton theorem, Newton and
MacMahon-Wronski identities, Plucker relations, Sylvester's theorem, the
Lagrange-Desnanot-Lewis Caroll formula, the Weinstein-Aronszajn formula, some
multiplicativity properties for the determinant, relations with
quasideterminants, calculation of the determinant via Gauss decomposition,
conjugation to the second normal (Frobenius) form, and so on and so forth. We
refer to [arXiv:0711.2236] for some applications.Comment: 80 page
- …