27 research outputs found

    Embryonic Development following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation

    Get PDF
    Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major epigenetic barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by IVF but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells, and its removal by ectopic expression of the H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency

    Crystal Structure of the Plant Epigenetic Protein Arginine Methyltransferase 10

    Get PDF
    Protein arginine methyltransferase 10 (PRMT10) is a type-I arginine methyltransferase essential for regulating flowering time in Arabidopsis thaliana (At). We present a 2.6 Å resolution crystal structure of AtPRMT10 in complex with a reaction product, S-adenosylhomocysteine. The structure reveals a dimerization arm 12–20 residues longer than PRMT structures elucidated previously; as a result, the essential AtPRMT10 dimer exhibits a large central cavity and a distinctly accessible active site. We employ molecular dynamics to examine how dimerization facilitates AtPRMT10 motions necessary for activity, and show that these motions are conserved in other PRMT enzymes. Finally, functional data reveal that the N-terminal ten residues of AtPRMT10 influence substrate specificity, and that enzyme activity is dependent on substrate protein sequences distal from the methylation site. Taken together, these data provide insights into the molecular mechanism of Arabidopsis thaliana PRMT10 as well as other members of the PRMT family of enzymes. They highlight differences between AtPRMT10 and other PRMTs, but also indicate that motions are a conserved element of PRMT function

    Loss of HDAC-Mediated Repression and Gain of NF-κB Activation Underlie Cytokine Induction in ARID1A- and PIK3CA-Mutation-Driven Ovarian Cancer

    Get PDF
    ARID1A is frequently mutated in ovarian clear cell carcinoma (OCCC) and often co-exists with activating mutations of PIK3CA. Although induction of pro-inflammatory cytokines has been observed in this cancer, the mechanism by which the two mutations synergistically activate cytokine genes remains elusive. Here, we established an in vitro model of OCCC by introducing ARID1A knockdown and mutant PIK3CA into a normal human ovarian epithelial cell line, resulting in cell transformation and cytokine gene induction. We demonstrate that loss of ARID1A impairs the recruitment of the Sin3A-HDAC complex, while the PIK3CA mutation releases RelA from IκB, leading to cytokine gene activation. We show that an NF-κB inhibitor partly attenuates the proliferation of OCCC and improves the efficacy of carboplatin both in cell culture and in a mouse model. Our study thus reveals the mechanistic link between ARID1A/PIK3CA mutations and cytokine gene induction in OCCC and suggests that NF-κB inhibition could be a potential therapeutic option

    Histone Methylation in Higher Plants

    No full text

    Regulation of flowering time by the protein arginine methyltransferase AtPRMT10

    No full text
    In plants, histone H3 lysine methyltransferases are important in gene silencing and developmental regulation; however, the roles of histone H4 methylation in plant development remain unclear. Recent studies found a type II histone arginine methyltransferase, AtPRTM5, which is involved in promoting growth and flowering. Here, we purified a dimerized plant-specific histone H4 methyltransferase, plant histone arginine methyltransferase 10 (PHRMT10), from cauliflower. Arabidopsis thaliana protein arginine methyltransferase 10 (AtPRMT10)—the Arabidopsis homologue of PHRMT10—was shown to be a type I PRMT, which preferentially asymmetrically methylated histone H4R3 in vitro. Genetic disruption of AtPRMT10 resulted in late flowering by upregulating FLOWERING LOCUS C (FLC) transcript levels. In addition, we show that AtPRMT10 functions genetically separate from AtPRMT5, but that each acts to fine-tune expression of FLC. This work adds an extra layer of complexity to flowering-time regulation and also sheds light on the importance of asymmetric arginine methylation in plant development

    Microbial Community Shifts with Soil Properties and Enzyme Activities in Inter-/Mono-Cropping Systems in Response to Tillage

    No full text
    No-till and cereal–legume intercropping have been recognized as favorable cropping practices to increase crop yields while maintaining soil quality in arid and semiarid environments, but the biological mechanisms are poorly understood. The present study aimed to determine the response of yields, soil properties, enzyme activities, and microbial community diversity and composition in mono- and inter-cropping under conventional and no-tillage conditions. We initiated a field experiment in Wuwei, a typical arid area of China, in 2014. Soil was sampled in August 2022 and, yields, soil properties, enzyme activities, and the microbial community diversity and composition were determined in the maize and pea strips in inter- and mono-cropping systems. Results revealed that the maize and pea strips in the no-till intercropping significantly increased yields, total and organic carbon stocks, decreased NO3−-N, and obtained the highest total and organic P in the soil. No-tillage significantly enhanced the Shannon index and Pielou evenness of the bacterial community and total microbial community over conventional tillage, with the α-diversity of the bacterial community and total microbial community distinctly higher in the NTIM treatment than in the CTIM treatment. The α-diversity of the total microbial community was significantly related to yield, soil IC and OC, and the α-diversity of the archaea community was significantly related to soil TC, TC/TP, TN/TP, and BX. Meanwhile, the α-diversity of the eukaryote community was significantly related to soil yield, soil TC/TP. Both no-tillage and intercropped maize significantly increased the abundance of archaea phylum Thaumarchaeota and bacterial phylum Nitrospirae, and were significantly positively associated with soil OC and NH4+-N, benefiting nitrogen fixation of intercropped pea from the atmosphere under the no-tillage cereal/legume intercropping. No-till intercropping was conducive to the accumulation of organic carbon, while decreasing the abundance of Proteobacteria, Acidobacteria, and Verrucomicrobia. Limited soil enzyme activities (ACP, ALP, DP, NAG, BG, AG, CB) led to decreases in organic carbon turnover and utilization. Intercropping altered soil microbial community diversity and composition due to changes in soil properties and enzyme activities. These findings suggest that no-tilled cereal–legume intercropping is a sustainable cropping practice for improving soil properties and enhancing microbial (archaea, bacterial, eukaryota) diversity, but the persistence is not conducive to rapid turnover of soil nutrients due to limited enzyme activities
    corecore