35 research outputs found

    Spin Modulation in Semiconductor Lasers

    Full text link
    We provide an analytic study of the dynamics of semiconductor lasers with injection (pump) of spin-polarized electrons, previously considered in the steady-state regime. Using complementary approaches of quasi-static and small signal analyses, we elucidate how the spin modulation in semiconductor lasers can improve performance, as compared to the conventional (spin-unpolarized) counterparts. We reveal that the spin-polarized injection can lead to an enhanced bandwidth and desirable switching properties of spin-lasers.Comment: 4 pages, 3 figure

    Extinction of Fear-potentiated Startle: Blockade by Infusion of an NMDA Antagonist into the Amygdala

    Get PDF
    Data derived from in vitro preparations indicate that NMDA receptors play a critical role in synaptic plasticity in the CNS. More recently, in vivo pharmacological manipulations have suggested that an NMDA-dependent process may be involved in specific forms of behavioral plasticity. All of the work thus far has focused on the possible role of NMDA receptors in the acquisition of responses. However, there are many examples in the behavioral literature of learning-induced changes that involve the reduction or elimination of a previously acquired response. Experimental extinction is a primary example of the elimination of a learned response. Experimental extinction is well described in the behavioral literature, but has not received the same attention in the neurobiological literature. As a result, the neural mechanisms that underlie this important form of learning are not at all understood. In the present experiments, the fear-potentiated startle paradigm was employed to begin to investigate neural mechanisms of extinction. The results show that infusion of the NMDA antagonist D,L-2-amino-5-phosphonovaleric acid (AP5) into the amygdala, a limbic structure known to be important for fear conditioning, dose-dependently blocked extinction of conditioned fear. Control experiments showed that the blockade of extinction was neither the result of the permanent disruption of amygdaloid function nor the result of decreased sensitivity of the animals to the conditioned stimulus. Infusion of AP5 into the interpositus nucleus of the cerebellum, a control site, did not block extinction. Finally, intra-amygdala infusion of a selected dose of the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione did not block extinction of conditioned fear. These results, together with a previous report from our laboratory (Miserendino et al., 1990), demonstrate the importance of the amygdala in the elaboration of conditioned fear and suggest that an NMDA-dependent process might underlie the extinction of conditioned fear

    Lesions of the Perirhinal Cortex but Not of the Frontal, Medial Prefrontal, Visual, or Insular Cortex Block Fear-Potentiated Startle Using a Visual Conditioned Stimulus

    Get PDF
    The present study is part of an ongoing series of experiments aimed at delineation of the neural pathways that mediate fear-potentiated startle, a model of conditioned fear in which the acoustic startle reflex is enhanced when elicited in the presence of a light previously paired with shock. A number of cortical areas that might be involved in relaying information about the visual conditioned stimulus (the light) in fear-potentiated startle were investigated. One hundred thirty-five rats were given 10 light-shock pairings on each of 2 consecutive days, and l-2 d later electrolytic or aspiration lesions in various cortical areas were performed. One week later, the magnitude of fear-potentiated startle was measured. Complete removal of the visual cortex, medial prefrontal cortex, insular cortex, or posterior perirhinal cortex had no significant effect on the magnitude of fear-potentiated startle. Lesions of the frontal cortex attenuated fear-potentiated startle by approximately 50%. However, lesions of the anterior perirhinal cortex completely eliminated fear-potentiated startle. The effective lesions included parts of the cortex both dorsal and ventral to the rhinal sulcus and extended from approximately 1.8 to 3.8 mm posterior to bregma. Lesions slightly more posterior (2.3-4.8 mm posterior to bregma) or lesions that included only the perirhinal cortex dorsal to the rhinal sulcus had no effect. The region of the perirhinal cortex in which lesions blocked fear-potentiated startle projects to the amygdala, and thus may be part of the pathway that relays the visual conditioned stimulus information to the amygdala, a structure that is also critical for fear-potentiated startle. In addition, the present findings are in agreement with numerous studies in primates suggesting that the perirhinal cortex may play a more general role in memory

    A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory

    Get PDF
    The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway.Brain & Behavior Research Foundation (Young Investigator Award)JPB Foundatio

    Physical science : principles and applications/ Payne

    No full text
    xiv, 654 hal. ; ill. 27 cm

    Multiscale Analysis and Validation of Effective Drug Combinations Targeting Driver KRAS Mutations in Non-Small Cell Lung Cancer

    No full text
    Pharmacogenomics is a rapidly growing field with the goal of providing personalized care to every patient. Previously, we developed the Computational Analysis of Novel Drug Opportunities (CANDO) platform for multiscale therapeutic discovery to screen optimal compounds for any indication/disease by performing analytics on their interactions using large protein libraries. We implemented a comprehensive precision medicine drug discovery pipeline within the CANDO platform to determine which drugs are most likely to be effective against mutant phenotypes of non-small cell lung cancer (NSCLC) based on the supposition that drugs with similar interaction profiles (or signatures) will have similar behavior and therefore show synergistic effects. CANDO predicted that osimertinib, an EGFR inhibitor, is most likely to synergize with four KRAS inhibitors.Validation studies with cellular toxicity assays confirmed that osimertinib in combination with ARS-1620, a KRAS G12C inhibitor, and BAY-293, a pan-KRAS inhibitor, showed a synergistic effect on decreasing cellular proliferation by acting on mutant KRAS. Gene expression studies revealed that MAPK expression is strongly correlated with decreased cellular proliferation following treatment with KRAS inhibitor BAY-293, but not treatment with ARS-1620 or osimertinib. These results indicate that our precision medicine pipeline may be used to identify compounds capable of synergizing with inhibitors of KRAS G12C, and to assess their likelihood of becoming drugs by understanding their behavior at the proteomic/interactomic scales
    corecore