46 research outputs found

    Treatment of pancreatic cancer with epidermal growth factor receptor-targeted therapy

    Get PDF
    Pancreatic adenocarcinoma is a common malignancy that remains refractory to available therapies. Gemcitabine has long been the standard, first-line agent in advanced disease. The epidermal growth factor receptor (EGFR) is a commonly expressed target in pancreatic cancer that is involved in tumor proliferation, metastasis, and induction of angiogenesis. The addition of the EGFR inhibitor erlotinib to gemcitabine has recently been demonstrated to provide a small, yet statistically significant, survival benefit in advanced disease. This has prompted further research into the applications of EGFR-targeted therapy in pancreatic cancer, albeit with disappointing results. Resistance to these therapies seems highly prevalent and has been implicated in their limited efficacy. The development of rash is associated with treatment efficacy and suggests that predictive factors may one day be identified to guide appropriate patient selection for these agents. Preclinical research has shown promise that resistance to EGFR-targeted therapies can be overcome through a variety of approaches. Application of this research in clinical trials may ultimately yield an unquestioned role for EGFR-targeted therapy in the management of this disease

    Structural Effects of Small Molecules on Phospholipid Bilayers Investigated by Molecular Simulations

    Full text link
    We summarize and compare recent Molecular Dynamics simulations on the interactions of dipalmitoylphosphatidylcholine (DPPC) bilayers in the liquid crystalline phase with a number of small molecules including trehalose, a disaccharide of glucose, alcohols, and dimethylsulfoxide (DMSO). The sugar molecules tend to stabilize the structure of the bilayer as they bridge adjacent lipid headgroups. They do not strongly change the structure of the bilayer. Alcohols and DMSO destabilize the bilayer as they increase its area per molecule in the bilayer plane and decrease the order parameter. Alcohols have a stronger detrimental effect than DMSO. The observables which we compare are the area per molecule in the plane of the bilayer, the membrane thickness, and the NMR order parameter of DPPC hydrocarbon tails. The area per molecule and the order parameter are very well correlated whereas the bilayer thickness is not necessarily correlated with them.Comment: 8 pages, 3 figures, accepted to Fluid Phase Equilibri

    Dexamethasone to prevent everolimus-induced stomatitis (Alliance MIST trial: A221701)

    Get PDF
    mTOR inhibitors such as everolimus may cause oral stomatitis, often a dose-limiting toxicity. Prior clinical research has suggested that a dexamethasone mouth rinse might help prevent and/or treat this. Alliance A221701 was a randomized phase III trial of patients initiating 10 mg daily oral everolimus that compared dexamethasone mouthwash taken preventively (initial dexamethasone group) versus therapeutically (initial placebo group) to assess two coprimary endpoints: the incidence of mTOR inhibitor-associated stomatitis (mIAS), and the area under the curve (AUC) of mIAS-associated pain over an 8-week treatment period. A Fisher\u27s exact test was used to compare the incidences while a Wilcoxon rank-sum test was used to compare the AUCs. In addition, we performed an exploratory analysis of the association of everolimus trough concentrations and toxicity using a Mann-Whitney U test. Due to slow accrual, this study closed after 39 patients were randomized (19 to upfront placebo and 20 to upfront dexamethasone). There were no significant differences between groups seen in either of the coprimary endpoints; furthermore, we found no association between whole blood everolimus trough concentrations and toxicity. Although limited by poor enrollment, the results of this study do not suggest that prophylactic dexamethasone mouthwash is superior to therapeutic dexamethasone mouthwash (initiated at the first sign of mouth pain) for reducing the incidence or severity of mIAS from everolimus

    Alliance Foundation Trial 09: A randomized, multicenter, phase 2 trial evaluating two sequences of pembrolizumab and standard platinum-based chemotherapy in patients with metastatic NSCLC

    Get PDF
    INTRODUCTION: The sequence of chemotherapy and pembrolizumab may affect antitumor immune response and efficacy of immunotherapy. METHODS: This multicenter, randomized, phase 2 trial was designed to evaluate the efficacy of two sequences of chemotherapy and pembrolizumab in patients with stage 4 NSCLC. Both arms were considered investigational, and the study used a pick a winner design. The primary end point was objective response rate by independent radiologic review after eight cycles (24 wk). Patients were randomized 1:1 to arm A (chemotherapy for four cycles followed by pembrolizumab for four cycles) or arm B (pembrolizumab for four cycles followed by chemotherapy for four cycles). Patients in both arms without disease progression after the initial eight cycles continued pembrolizumab until disease progression, unacceptable toxicity, or a maximum of 2 years. RESULTS: From March 2016 to July 2018, a total of 90 eligible patients were randomized (43 patients to arm A and 47 patients to arm B). The objective response rate at 24 weeks in arms A and B was 39.5 % (95 % confidence interval [CI]: 24.9%-54.1 %) and 40.4 % (95 % CI: 26.4%-54.5 %), respectively ( CONCLUSIONS: Additional evaluation of either sequence in a phase 3 trial is not warranted

    Association Between Androgen Deprivation Therapy and Mortality Among Patients With Prostate Cancer and COVID-19

    Get PDF
    Importance: Androgen deprivation therapy (ADT) has been theorized to decrease the severity of SARS-CoV-2 infection in patients with prostate cancer owing to a potential decrease in the tissue-based expression of the SARS-CoV-2 coreceptor transmembrane protease, serine 2 (TMPRSS2). Objective: To examine whether ADT is associated with a decreased rate of 30-day mortality from SARS-CoV-2 infection among patients with prostate cancer. Design, Setting, and Participants: This cohort study analyzed patient data recorded in the COVID-19 and Cancer Consortium registry between March 17, 2020, and February 11, 2021. The consortium maintains a centralized multi-institution registry of patients with a current or past diagnosis of cancer who developed COVID-19. Data were collected and managed using REDCap software hosted at Vanderbilt University Medical Center in Nashville, Tennessee. Initially, 1228 patients aged 18 years or older with prostate cancer listed as their primary malignant neoplasm were included; 122 patients with a second malignant neoplasm, insufficient follow-up, or low-quality data were excluded. Propensity matching was performed using the nearest-neighbor method with a 1:3 ratio of treated units to control units, adjusted for age, body mass index, race and ethnicity, Eastern Cooperative Oncology Group performance status score, smoking status, comorbidities (cardiovascular, pulmonary, kidney disease, and diabetes), cancer status, baseline steroid use, COVID-19 treatment, and presence of metastatic disease. Exposures: Androgen deprivation therapy use was defined as prior bilateral orchiectomy or pharmacologic ADT administered within the prior 3 months of presentation with COVID-19. Main Outcomes and Measures: The primary outcome was the rate of all-cause 30-day mortality after COVID-19 diagnosis for patients receiving ADT compared with patients not receiving ADT after propensity matching. Results: After exclusions, 1106 patients with prostate cancer (before propensity score matching: median age, 73 years [IQR, 65-79 years]; 561 (51%) self-identified as non-Hispanic White) were included for analysis. Of these patients, 477 were included for propensity score matching (169 who received ADT and 308 who did not receive ADT). After propensity matching, there was no significant difference in the primary end point of the rate of all-cause 30-day mortality (OR, 0.77; 95% CI, 0.42-1.42). Conclusions and Relevance: Findings from this cohort study suggest that ADT use was not associated with decreased mortality from SARS-CoV-2 infection. However, large ongoing clinical trials will provide further evidence on the role of ADT or other androgen-targeted therapies in reducing COVID-19 infection severity

    Breakthrough SARS-CoV-2 infections among patients with cancer following two and three doses of COVID-19 mRNA vaccines: a retrospective observational study from the COVID-19 and Cancer Consortium

    Get PDF
    BACKGROUND: Breakthrough SARS-CoV-2 infections following vaccination against COVID-19 are of international concern. Patients with cancer have been observed to have worse outcomes associated with COVID-19 during the pandemic. We sought to evaluate the clinical characteristics and outcomes of patients with cancer who developed breakthrough SARS-CoV-2 infections after 2 or 3 doses of mRNA vaccines. METHODS: We evaluated the clinical characteristics of patients with cancer who developed breakthrough infections using data from the multi-institutional COVID-19 and Cancer Consortium (CCC19; NCT04354701). Analysis was restricted to patients with laboratory-confirmed SARS-CoV-2 diagnosed in 2021 or 2022, to allow for a contemporary unvaccinated control population; potential differences were evaluated using a multivariable logistic regression model after inverse probability of treatment weighting to adjust for potential baseline confounding variables. Adjusted odds ratios (aOR) and 95% confidence intervals (CI) are reported. The primary endpoint was 30-day mortality, with key secondary endpoints of hospitalization and ICU and/or mechanical ventilation (ICU/MV). FINDINGS: The analysis included 2486 patients, of which 564 and 385 had received 2 or 3 doses of an mRNA vaccine prior to infection, respectively. Hematologic malignancies and recent receipt of systemic anti-neoplastic therapy were more frequent among vaccinated patients. Vaccination was associated with improved outcomes: in the primary analysis, 2 doses (aOR: 0.62, 95% CI: 0.44-0.88) and 3 doses (aOR: 0.20, 95% CI: 0.11-0.36) were associated with decreased 30-day mortality. There were similar findings for the key secondary endpoints of ICU/MV (aOR: 0.60, 95% CI: 0.45-0.82 and 0.37, 95% CI: 0.24-0.58) and hospitalization (aOR: 0.60, 95% CI: 0.48-0.75 and 0.35, 95% CI: 0.26-0.46) for 2 and 3 doses, respectively. Importantly, Black patients had higher rates of hospitalization (aOR: 1.47, 95% CI: 1.12-1.92), and Hispanic patients presented with higher rates of ICU/MV (aOR: 1.61, 95% CI: 1.06-2.44). INTERPRETATION: Vaccination against COVID-19, especially with additional doses, is a fundamental strategy in the prevention of adverse outcomes including death, among patients with cancer. FUNDING: This study was partly supported by grants from the National Cancer Institute grant number P30 CA068485 to C-YH, YS, SM, JLW; T32-CA236621 and P30-CA046592 to C.R.F; CTSA 2UL1TR001425-05A1 to TMW-D; ACS/FHI Real-World Data Impact Award, P50 MD017341-01, R21 CA242044-01A1, Susan G. Komen Leadership Grant Hunt to MKA. REDCap is developed and supported by Vanderbilt Institute for Clinical and Translational Research grant support (UL1 TR000445 from NCATS/NIH)

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    corecore