2,355 research outputs found

    Production and characterization of random electrode sectorization in GEM foils

    Full text link
    In triple-GEM detectors, the segmentation of GEM foils in electrically independent sectors allows reducing the probability of discharge damage to the detector and improving the detector rate capability; however, a segmented foil presents thin dead regions in the separation between two sectors and the segmentation pattern has to be manually aligned with the GEM hole pattern during the foil manufacturing, a procedure potentially sensitive to errors. We describe the production and characterization of triple-GEM detectors produced with an innovative GEM foil segmentation technique, the ``random hole segmentation'', that allows an easier manufacturing of segmented GEM foils. The electrical stability to high voltage and the gain uniformity of a random-hole segmented triple-GEM prototype are measured. The results of a test beam on a prototype assembled for the Phase-2 GEM upgrade of the CMS experiment are also presented; a high-statistics efficiency measurement shows that the random hole segmentation can limit the efficiency loss of the detector in the areas between two sectors, making it a viable alternative to blank segmentation for the GEM foil manufacturing of large-area detector systems

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore