2 research outputs found

    A comparative gene co-expression analysis using self-organizing maps on two congener filmy ferns identifies specific desiccation tolerance mechanisms associated to their microhabitat preference

    No full text
    Abstract Background Filmy-ferns (Hymenophyllaceae) are poikilohydric, homoiochlorophyllous desiccation-tolerant (DT) epiphytes. They can colonize lower and upper canopy environments of humid forest. Filmy-ferns desiccate rapidly (hours), contrasting with DT angiosperms (days/weeks). It has been proposed that desiccation tolerance in filmy-ferns would be associated mainly with constitutive features rather than induced responses during dehydration. However, we hypothesize that the inter-specific differences in vertical distribution would be associated with different dynamics of gene expression within the dehydration or rehydration phases. A comparative transcriptomic analysis with an artificial neural network was done on Hymenophyllum caudiculatum (restricted to lower canopy) and Hymenophyllum dentatum (reach upper canopy) during a desiccation/rehydration cycle. Results Raw reads were assembled into 69,599 transcripts for H. dentatum and 34,726 transcripts for H. caudiculatum. Few transcripts showed significant changes in differential expression (DE). H. caudiculatum had ca. twice DE genes than H. dentatum and higher proportion of increased-and-decreased abundance of genes occurs during dehydration. In contrast, the abundance of genes in H. dentatum decreased significantly when transitioning from dehydration to rehydration. According to the artificial neural network results, H. caudiculatum enhanced osmotic responses and phenylpropanoid related pathways, whilst H. dentatum enhanced its defense system responses and protection against high light stress. Conclusions Our findings provide a deeper understanding of the mechanisms underlying the desiccation tolerance responses of two filmy ferns and the relationship between the species-specific response and the microhabitats these ferns occupy in nature

    Efficient Biocontrol of Gaeumannomyces graminis var. Tritici in Wheat: Using Bacteria Isolated from Suppressive Soils

    No full text
    “Take-all” disease is the most important biotic factor affecting cereal productivity, causing 30–50% of crop losses. The causal agent is the ascomycete soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). Current control measures are ineffective, because Ggt can remain saprophytic in soils for long periods. Therefore, the study of the microbiome residing in suppressive soils (SS) is a promising niche of Ggt biocontrol. Here, we evaluated the efficiency of Serratia sp., Bacillus sp., and Acinetobacter sp. isolated from SS against the incidence of Ggt on wheat. Our results demonstrated that plants inoculated with the bacterial consortium in both greenhouse and field conditions were highly efficient in Ggt biocontrol, more so than individual strains. The disease reduction was evidenced by higher biomass production, fewer copies of the Ggt genome with a concomitant curtailment of blackening of roots, a decrease of lipid peroxidation, and an increase of superoxide dismutase activity. The ability of the microbial consortium over that of single strains could be attributable to interspecies communication as a strategy to biocontrol; i.e., higher chitinase activity. In conclusion, bacterial consortia from SS are an important niche of Ggt biocontrol, serving as a model for other soil-borne pathogens
    corecore