126 research outputs found

    Quantum Hall Effect in Bernal Stacked and Twisted Bilayer Graphene Grown on Cu by Chemical Vapor Deposition

    Full text link
    We examine the quantum Hall effect in bilayer graphene grown on Cu substrates by chemical vapor deposition. Spatially resolved Raman spectroscopy suggests a mixture of Bernal (A-B) stacked and rotationally faulted (twisted) domains. Magnetotransport measurements performed on bilayer domains with a wide 2D band reveal quantum Hall states (QHSs) at filling factors ν=4,8,12\nu=4, 8, 12 consistent with a Bernal stacked bilayer, while magnetotransport measurements in bilayer domains defined by a narrow 2D band show a superposition of QHSs of two independent monolayers. The analysis of the Shubnikov-de Haas oscillations measured in twisted graphene bilayers provides the carrier density in each layer as a function of the gate bias and the inter-layer capacitance.Comment: 5 pages, 4 figure

    Dielectric Thickness Dependence of Carrier Mobility in Graphene with HfO2 Top Dielectric

    Full text link
    We investigate the carrier mobility in mono- and bi-layer graphene with a top HfO2 dielectric, as a function of the HfO2 film thickness and temperature. The results show that the carrier mobility decreases during the deposition of the first 2-4 nm of top dielectric and remains constant for thicker layers. The carrier mobility shows a relatively weak dependence on temperature indicating that phonon scattering does not play a dominant role in controlling the carrier mobility. The data strongly suggest that fixed charged impurities located in close proximity to the graphene are responsible for the mobility degradation.Comment: 3 pages, 4 figure

    Direct Measurement of the Fermi Energy in Graphene Using a Double Layer Structure

    Full text link
    We describe a technique which allows a direct measurement of the relative Fermi energy in an electron system using a double layer structure, where graphene is one of the two layers. We illustrate this method by probing the Fermi energy as a function of density in a graphene monolayer, at zero and in high magnetic fields. This technique allows us to determine the Fermi velocity, Landau level spacing, and Landau level broadening in graphene. We find that the N=0 Landau level broadening is larger by comparison to the broadening of upper and lower Landau levels.Comment: 5 pages, 4 figure
    corecore