25 research outputs found

    Observations of the High Redshift Universe

    Get PDF
    (Abridged) In these lectures aimed for non-specialists, I review progress in understanding how galaxies form and evolve. Both the star formation history and assembly of stellar mass can be empirically traced from redshifts z~6 to the present, but how the various distant populations inter-relate and how stellar assembly is regulated by feedback and environmental processes remains unclear. I also discuss how these studies are being extended to locate and characterize the earlier sources beyond z~6. Did early star-forming galaxies contribute significantly to the reionization process and over what period did this occur? Neither theory nor observations are well-developed in this frontier topic but the first results presented here provide important guidance on how we will use more powerful future facilities.Comment: To appear in `First Light in Universe', Saas-Fee Advanced Course 36, Swiss Soc. Astrophys. Astron. in press. 115 pages, 64 figures (see http://www.astro.caltech.edu/~rse/saas-fee.pdf for hi-res figs.) For lecture ppt files see http://obswww.unige.ch/saas-fee/preannouncement/course_pres/overview_f.htm

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Impact of simulated drought stress on soil microbiology, and nematofauna in a native shrub + millet intercropping system in Senegal

    No full text
    Drought stress strongly affects soil biota and impairs crop production, which under climate change will be exacerbated in semi-arid cropping regions such as the Sahel. Hence soil management systems are needed that can buffer against drought. In West Africa, field studies have found intercropping of millet with the native shrub Piliostigma reticulatum improves soil-plant-water relations, microbial activity and diversity, and suppress parasitic nematodes, which can significantly increase crop yield. However, little information is available on its beneficial or negative effects on soils or crops during water stress. Therefore, the objective was to investigate the impact of P. reticulatum in moderating water stress effects on soil properties and pearl millet (Pennisetum glaucum [L.] R. Br.) productivity. In the greenhouse, soil chemical and microbial properties and millet growth were investigated with a factorial experiment of varying levels of soil moisture (favorable, moderately stressed, or severely stressed water conditions) that was imposed for 55 days on soils containing sole P. reticulatum or millet, or millet + P. reticulatum. The results showed that the presence of P. reticulatum did not buffer soils against water stress in relation to soil chemical and microbial properties measured at the end of the experiment. Severe water stress did significantly decrease the height, number of leaves, and aboveground biomass of millet plants. Additionally, respiration, nematofauna trophic structure and abundance decreased as water stress increased. Lastly, bacterial feeders and plant parasitic nematodes were the most sensitive to severe water stress while fungal feeding nematodes remained unaffected. The results suggested that the intensity of water stress had more negative effects on soil basal respiration rather than soil microbial biomass

    Perspectives on the 'Alien' versus 'Native' Species Debate: A Critique of Concepts, Language and Practice

    No full text
    The classification of species as either 'native' or 'alien' is one of the organizing principles of conservation, but the validity of this dualism has increasingly been questioned, sparking debates which raise quintessentially geographical questions about place, space, nature and humanity-nature interactions. This discussion reviews the key criticisms of the native/alien construct, including its spatiotemporally arbitrary character, its disturbingly xenophobic associations, the logical problems of attributing native or alien status to our own species, and the ethical disjunction between the promotion of a multicultural human society and the persecution of 'foreign' species. Given that the native/alien polarity is a subset of the discredited nature/culture duality, its conceptual foundations seem irredeemably fractured. An alternative framework based on a 'damage criterion' rather than putative biogeographical origins is advocated.</p

    Phenomenology of Active Galactic Nuclei

    No full text
    corecore