335 research outputs found

    Allelic Expression Imbalance Promoting a Mutant PEX6 Allele Causes Zellweger Spectrum Disorder

    Get PDF
    Zellweger spectrum disorders (ZSDs) are autosomal-recessive disorders that are caused by defects in peroxisome biogenesis due to bi-allelic mutations in any of 13 different PEX genes. Here, we identified seven unrelated individuals affected with an apparent dominant ZSD in whom a heterozygous mutant PEX6 allele (c.2578C&gt;T [p.Arg860Trp]) was overrepresented due to allelic expression imbalance (AEI). We demonstrated that AEI of PEX6 is a common phenomenon and is correlated with heterozygosity for a frequent variant in the 3' untranslated region (UTR) of the mutant allele, which disrupts the most distal of two polyadenylation sites. Asymptomatic parents, who were heterozygous for PEX c.2578C&gt;T, did not show AEI and were homozygous for the 3' UTR variant. Overexpression models confirmed that the overrepresentation of the pathogenic PEX6 c.2578T variant compared to wild-type PEX6 c.2578C results in a peroxisome biogenesis defect and thus constitutes the cause of disease in the affected individuals. AEI promoting the overrepresentation of a mutant allele might also play a role in other autosomal-recessive disorders, in which only one heterozygous pathogenic variant is identified.</p

    On the buildup of massive early-type galaxies at z<~1. I- Reconciling their hierarchical assembly with mass-downsizing

    Get PDF
    Several studies have tried to ascertain whether or not the increase in abundance of the early-type galaxies (E-S0a's) with time is mainly due to major mergers, reaching opposite conclusions. We have tested it directly through semi-analytical modelling, by studying how the massive early-type galaxies with log(M_*/Msun)>11 at z~0 (mETGs) would have evolved backwards-in-time, under the hypothesis that each major merger gives place to an early-type galaxy. The study was carried out just considering the major mergers strictly reported by observations at each redshift, and assuming that gas-rich major mergers experience transitory phases of dust-reddened, star-forming galaxies (DSFs). The model is able to reproduce the observed evolution of the galaxy LFs at z<~1, simultaneously for different rest-frame bands (B, I, and K) and for different selection criteria on color and morphology. It also provides a framework in which apparently-contradictory results on the recent evolution of the luminosity function (LF) of massive, red galaxies can be reconciled, just considering that observational samples of red galaxies can be significantly contaminated by DSFs. The model proves that it is feasible to build up ~50-60% of the present-day mETG population at z<~1 and to reproduce the observational excess by a factor of ~4-5 of late-type galaxies at 0.8<z<1 through the coordinated action of wet, mixed, and dry major mergers, fulfilling global trends that are in general agreement with mass-downsizing. The bulk of this assembly takes place during ~1 Gyr elapsed at 0.8<z<1. The model suggests that major mergers have been the main driver for the observational migration of mass from the massive-end of the blue galaxy cloud to that of the red sequence in the last ~8 Gyr.(Abridged)Comment: Accepted for publication in Astronomy & Astrophysics; 21 pages, 8 figures. Minor corrections included, shortened title. Results and conclusions unchange

    ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation

    Get PDF
    ERAL1, a homologue of Era protein in Escherichia coli, is a member of conserved GTP-binding proteins with RNA-binding activity. Depletion of prokaryotic Era inhibits cell division without affecting chromosome segregation. Previously, we isolated ERAL1 protein as one of proteins which were associated with mitochondrial transcription factor A by using immunoprecipitation. In this study, we analysed the localization and function of ERAL1 in mammalian cells. ERAL1 was localized in mitochondrial matrix and associated with mitoribosomal proteins including the 12S rRNA. siRNA knockdown of ERAL1 decreased mitochondrial translation, caused redistribution of ribosomal small subunits and reduced 12S rRNA. The knockdown of ERAL1 in human HeLa cells elevated mitochondrial superoxide production and slightly decreased mitochondrial membrane potential. The knockdown inhibited the growth of HeLa cells with an accumulation of apoptotic cells. These results suggest that ERAL1 is localized in a small subunit of the mitochondrial ribosome, plays an important role in the small ribosomal constitution, and is also involved in cell viability

    Transcription factors relevant to auxin signalling coordinate broad-spectrum metabolic shifts including sulphur metabolism

    Get PDF
    A systems approach has previously been used to follow the response behaviour of Arabidopsis thaliana plants upon sulphur limitation. A response network was reconstructed from a time series of transcript and metabolite profiles, integrating complex metabolic and transcript data in order to investigate a potential causal relationship. The resulting scale-free network allowed potential transcriptional regulators of sulphur metabolism to be identified. Here, three sulphur-starvation responsive transcription factors, IAA13, IAA28, and ARF-2 (ARF1-Binding Protein), all of which are related to auxin signalling, were selected for further investigation. IAA28 overexpressing and knock-down lines showed no major morphological changes, whereas IAA13- and ARF1-BP-overexpressing plants grew more slowly than the wild type. Steady-state metabolite levels and expression of pathway-relevant genes were monitored under normal and sulphate-depleted conditions. For all lines, changes in transcript and metabolite levels were observed, yet none of these changes could exclusively be linked to sulphur stress. Instead, up- or down-regulation of the transcription factors caused metabolic changes which in turn affected sulphur metabolism. Auxin-relevant transcription factors are thus part of a complex response pattern to nutrient starvation that serve as coordinators of the metabolic shifts driving sulphur homeostasis rather then as direct effectors of the sulphate assimilation pathway. This study provides the first evidence ever presented that correlates auxin-related transcriptional regulators with primary plant metabolism

    Sirtuin 2 Deficiency Increases Bacterial Phagocytosis by Macrophages and Protects from Chronic Staphylococcal Infection.

    Get PDF
    Sirtuin 2 (SIRT2) is one of the seven members of the family of NAD(+)-dependent histone deacetylases. Sirtuins target histones and non-histone proteins according to their subcellular localization, influencing various biological processes. SIRT2 resides mainly in the cytoplasm and regulates cytoskeleton dynamics, cell cycle, and metabolic pathways. As such, SIRT2 has been implicated in the pathogenesis of neurodegenerative, metabolic, oncologic, and chronic inflammatory disorders. This motivated the development of SIRT2-directed therapies for clinical purposes. However, the impact of SIRT2 on antimicrobial host defense is largely unknown. Here, we address this question using SIRT2 knockout mice. We show that SIRT2 is the most highly expressed sirtuin in myeloid cells, especially macrophages. SIRT2 deficiency does not affect immune cell development and marginally impacts on intracellular signaling and cytokine production by splenocytes and macrophages. However, SIRT2 deficiency enhances bacterial phagocytosis by macrophages. In line with these observations, in preclinical models, SIRT2 deficiency increases survival of mice with chronic staphylococcal infection, while having no effect on the course of toxic shock syndrome toxin-1, LPS or TNF-induced shock, fulminant Escherichia coli peritonitis, sub-lethal Klebsiella pneumoniae pneumonia, and chronic candidiasis. Altogether, these data support the safety profile of SIRT2 inhibitors under clinical development in terms of susceptibility to infections

    Dichloroacetate reverses the hypoxic adaptation to bevacizumab and enhances its antitumor effects in mouse xenografts.

    Get PDF
    Inhibition of vascular endothelial growth factor increases response rates to chemotherapy and progression-free survival in glioblastoma. However, resistance invariably occurs, prompting the urgent need for identification of synergizing agents. One possible strategy is to understand tumor adaptation to microenvironmental changes induced by antiangiogenic drugs and test agents that exploit this process. We used an in vivo glioblastoma-derived xenograft model of tumor escape in presence of continuous treatment with bevacizumab. U87-MG or U118-MG cells were subcutaneously implanted into either BALB/c SCID or athymic nude mice. Bevacizumab was given by intraperitoneal injection every 3 days (2.5 mg/kg/dose) and/or dichloroacetate (DCA) was administered by oral gavage twice daily (50 mg/kg/dose) when tumor volumes reached 0.3 cm(3) and continued until tumors reached approximately 1.5-2.0 cm(3). Microarray analysis of resistant U87 tumors revealed coordinated changes at the level of metabolic genes, in particular, a widening gap between glycolysis and mitochondrial respiration. There was a highly significant difference between U87-MG-implanted athymic nude mice 1 week after drug treatment. By 2 weeks of treatment, bevacizumab and DCA together dramatically blocked tumor growth compared to either drug alone. Similar results were seen in athymic nude mice implanted with U118-MG cells. We demonstrate for the first time that reversal of the bevacizumab-induced shift in metabolism using DCA is detrimental to neoplastic growth in vivo. As DCA is viewed as a promising agent targeting tumor metabolism, our data establish the timely proof of concept that combining it with antiangiogenic therapy represents a potent antineoplastic strategy

    Supportive Care During Pediatric Hematopoietic Stem Cell Transplantation : Prevention of Infections. A Report From Workshops on Supportive Care of the Paediatric Diseases Working Party (PDWP) of the European Society for Blood and Marrow Transplantation (EBMT)

    Get PDF
    Specific protocols define eligibility, conditioning, donor selection, graft composition and prophylaxis of graft vs. host disease for children and young adults undergoing hematopoietic stem cell transplant (HSCT). However, international protocols rarely, if ever, detail supportive care, including pharmaceutical infection prophylaxis, physical protection with face masks and cohort isolation or food restrictions. Supportive care suffers from a lack of scientific evidence and implementation of practices in the transplant centers brings extensive restrictions to the child's and family's daily life after HSCT. Therefore, the Board of the Pediatric Diseases Working Party (PDWP) of the European Society for Blood and Marrow Transplantation (EBMT) held a series of dedicated workshops since 2017 with the aim of initiating the production of a set of minimal recommendations. The present paper describes the consensus reached within the field of infection prophylaxis.Peer reviewe

    Brine utilisation for cooling and salt production in wind-driven seawater greenhouses:Design and modelling

    Get PDF
    Brine disposal is a major challenge facing the desalination industry. Discharged brines pollute the oceans and aquifers. Here is it proposed to reduce the volume of brines by means of evaporative coolers in seawater greenhouses, thus enabling the cultivation of high-value crops and production of sea salt. Unlike in typical greenhouses, only natural wind is used for ventilation, without electric fans. We present a model to predict the water evaporation, salt production, internal temperature and humidity according to ambient conditions. Predictions are presented for three case studies: (a) the Horn of Africa (Berbera) where a seawater desalination plant will be coupled to salt production; (b) Iran (Ahwaz) for management of hypersaline water from the Gotvand dam; (c) Gujarat (Ahmedabad) where natural seawater is fed to the cooling process, enhancing salt production in solar salt works. Water evaporation per face area of evaporator pad is predicted in the range 33 to 83 m3/m2·yr, and salt production up to 5.8 tonnes/m2·yr. Temperature is lowest close to the evaporator pad, increasing downwind, such that the cooling effect mostly dissipates within 15 m of the cooling pad. Depending on location, peak temperatures reduce by 8–16 °C at the hottest time of year

    Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    Get PDF
    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues
    corecore