3,490 research outputs found

    Excited Heavy Mesons Beyond Leading Order in the Heavy Quark Expansion

    Get PDF
    We examine the decays of excited heavy mesons, including the leading power corrections to the heavy quark limit. We find a new and natural explanation for the large deviation of the width of the D1(2420)D_1(2420) from the heavy quark symmetry prediction. Our formalism leads to detailed predictions for the properties of the excited bottom mesons, some of which recently have been observed. Finally, we present a detailed analysis of the effect of power corrections and finite meson widths on the angular distributions which may be measured in heavy meson decays.Comment: Uses REVTeX, 19 pages, 6 EPS figures embedded with epsf.st

    Phenomenological Study of Strong Decays of Heavy Hadrons in Heavy Quark Effective Theory

    Get PDF
    The application of the tensor formalism of the heavy quark effective theory (HQET) at leading order to strong decays of heavy hadrons is presented. Comparisons between experimental and theoretical predictions of ratios of decay rates for B mesons, D mesons and kaons are given. The application of HQET to strange mesons presents some encouraging results. The spin-flavor symmetry is used to predict some decay rates that have not yet been measured.Comment: 10 page

    Semileptonic B and Lambda_b Decays and Local Duality in QCD

    Full text link
    The inclusive and exclusive semileptonic decay distributions for b -> c decay are computed in the Shifman-Voloshin limit. The inclusive decay distributions (computed using an operator product expansion) depend on quark masses, and the exclusive decay distributions depend on hadron masses. Nevertheless, we show explicitly how the first two terms in the 1/m expansion match between the inclusive and exclusive decays. Agreement between the inclusive and exclusive decay rates requires a minimum smearing region of size Lambda_QCD before local duality holds in QCD. The alpha_s corrections to the inclusive and exclusive decay rates are also shown to agree to order (log m)/m^2. The alpha_s/m^2 corrections are used to obtain the alpha_s correction to Bjorken's inequality on the slope of the Isgur-Wise function.Comment: 22 pages, 3 eps figures, uses revtex (Revision: a discussion of radiative corrections to the bound K>0 of Section 7.B has been added; some typos, including labels in fig 2

    Heavy-to-light baryonic form factors at large recoil

    Full text link
    We analyze heavy-to-light baryonic form factors at large recoil and derive the scaling behavior of these form factors in the heavy quark limit. It is shown that only one universal form factor is needed to parameterize Lambda_b to p and Lambda_b to Lambda matrix elements in the large recoil limit of light baryons, while hadronic matrix elements of Lambda_b to Sigma transition vanish in the large energy limit of Sigma baryon due to the space-time parity symmetry. The scaling law of the soft form factor eta(P^{\prime} \cdot v), P^{\prime} and v being the momentum of nucleon and the velocity of Lambda_b baryon, responsible for Lambda_b to p transitions is also derived using the nucleon distribution amplitudes in leading conformal spin. In particular, we verify that this scaling behavior is in full agreement with that from light-cone sum rule approach in the heavy-quark limit. With these form factors, we further investigate the Lambda baryon polarization asymmetry alpha in Lambda_b to Lambda gamma and the forward-backward asymmetry A_{FB} in Lambda_b to Lambda l^{+} l^{-}. Both two observables (alpha and A_{FB}) are independent of hadronic form factors in leading power of 1/m_b and in leading order of alpha_s. We also extend the analysis of hadronic matrix elements for Omega_b to Omega transitions to rare Omega_b to Omega gamma and Omega_b to Omega l^{+} l^{-} decays and find that radiative Omega_b to Omega gamma decay is probably the most promising FCNC b to s radiative baryonic decay channel. In addition, it is interesting to notice that the zero-point of forward-backward asymmetry of Omega_b to Omega l^{+} l^{-} is the same as the one for Lambda_b to Lambda l^{+} l^{-} to leading order accuracy provided that the form factors \bar{\zeta}_i (i=3, 4, 5) are numerically as small as indicated from the quark model.Comment: 19 page

    Strong Decays Of Heavy Hadrons In HQET

    Get PDF
    We discuss the application of the tensor formalism of HQET to the strong decays of heavy hadrons. We treat both meson and baryon decays, and note that all of our results are in agreement with the `spin-counting' arguments of Isgur and Wise. We briefly discuss the possible extension of the formalism to include 1/m1/m corrections.Comment: 8 pages, RevTe

    The Mass Definition in Hqet and a New Determination of Vcb_{\text{cb}}

    Full text link
    Positive powers of the mass parameter in a physical quantity calculated with the help of heavy quark effective theory originate from a Wilson coefficient in the matching of QCD and HQET Green function. We show that this mass parameter enters the calculation as a well--defined running current mass. We further argue that the recently found ill--definition of the pole mass, which is the natural expansion parameter of HQET, does not affect a phenomenological analysis which uses truncated perturbative series. We reanalyse inclusive semileptonic decays of heavy mesons and obtain the cc quark mass mcMS(mc)=(1.35±0.20)GeVm_c^{\overline{\text{MS}}}(m_c) = (1.35\pm 0.20)\,\text{GeV} where the error is almost entirely due to scale--uncertainties. We also obtain mbMS(mb)=(4.6±0.3)GeVm_b^{\overline{\text{MS}}}(m_b) = (4.6\pm 0.3)\,\text{GeV} and Vcb(τB/1.49ps)1/2=0.036±0.005|V_{cb}|(\tau_B/1.49\,\text{ps})^{1/2} = 0.036\pm 0.005 where the errors come from the uncertainty in the kinetic energy of the heavy quark inside the meson, in the experimental branching ratios, in QCD input parameters, and scale--uncertainties.Comment: 21 p., 5 figs, all style files incl., TUM-T31-56/R (Sec. 2 revised, phenomenological results unchanged

    Resumming Phase Space Logarithms in Inclusive Semileptonic BB Decays

    Get PDF
    We study logarithms of the form ln(mq/mb)\ln(m_q/m_b) which arise in the inclusive semileptonic decay of a bottom quark to a quark of mass mqm_q. We use the renormalization group to resum the leading radiative corrections to these terms, of the form mq2αsnlnn(mq/mb)m_q^2\alpha_s^n\ln^n(m_q/m_b), mq3αsn+1lnn(mq/mb)m_q^3\alpha_s^{n+1}\ln^n(m_q/m_b) and mq4αsnlnn+1(mq/mb)m_q^4\alpha_s^n\ln^{n+1}(m_q/m_b). The first two resummations are trivial, while the latter involves a non-trivial mixing of four-fermi operators in the 1/mb1/m_b expansion. We illustrate this technique in a toy model in which the semileptonic decay is mediated by a vector interaction, before treating the more complicated case of left-handed decay.Comment: 18 pages, REVTeX, 8 EPS figures embedded. Final version, to appear in Physical Review D; one reference has been adde

    Generalization of the Bound State Model

    Get PDF
    In the bound state approach the heavy baryons are constructed by binding, with any orbital angular momentum, the heavy meson multiplet to the nucleon considered as a soliton in an effective meson theory. We point out that this picture misses an entire family of states, labeled by a different angular momentum quantum number, which are expected to exist according to the geometry of the three-body constituent quark model (for N_C=3). To solve this problem we propose that the bound state model be generalized to include orbitally excited heavy mesons bound to the nucleon. In this approach the missing angular momentum is ``locked-up'' in the excited heavy mesons. In the simplest dynamical realization of the picture we give conditions on a set of coupling constants for the binding of the missing heavy baryons of arbitrary spin. The simplifications made include working in the large M limit, neglecting nucleon recoil corrections, neglecting mass differences among different heavy spin multiplets and also neglecting the effects of light vector mesons.Comment: 35 pages (ReVTeX), 2 PostScript Figure

    Heavy-Quark Symmetry and the Electromagnetic Decays of Excited Charmed Strange Mesons

    Full text link
    Heavy-hadron chiral perturbation theory (HHχ\chiPT) is applied to the decays of the even-parity charmed strange mesons, D_{s0}(2317) and D_{s1}(2460). Heavy-quark spin symmetry predicts the branching fractions for the three electromagnetic decays of these states to the ground states D_s and D_s^* in terms of a single parameter. The resulting predictions for two of the branching fractions are significantly higher than current upper limits from the CLEO experiment. Leading corrections to the branching ratios from chiral loop diagrams and spin-symmetry violating operators in the HHχ\chiPT Lagrangian can naturally account for this discrepancy. Finally the proposal that the D_{s0}(2317) (D_{s1}(2460)) is a hadronic bound state of a D (D^*) meson and a kaon is considered. Leading order predictions for electromagnetic branching ratios in this molecular scenario are in very poor agreement with existing data.Comment: 25 pages, 3 figure
    corecore