8 research outputs found

    Scanning mutagenesis of RNA-binding protein ProQ reveals a quality control role for the Lon protease

    Get PDF
    The FinO-domain protein ProQ belongs to a widespread family of RNA-binding proteins (RBPs) involved in gene regulation in bacterial chromosomes and mobile elements. While the cellular RNA targets of ProQ have been established in diverse bacteria, the functionally crucial ProQ residues remain to be identified under physiological conditions. Following our discovery that ProQ deficiency alleviates growth suppression of Salmonella with succinate as the sole carbon source, an experimental evolution approach was devised to exploit this phenotype. By coupling mutational scanning with loss-of-function selection, we identified multiple ProQ residues in both the amino-terminal FinO domain and the variable carboxy-terminal region that are required for ProQ activity. Two carboxy-terminal mutations abrogated ProQ function and mildly impaired binding of a model RNA target. In contrast, several mutations in the FinO domain rendered ProQ both functionally inactive and unable to interact with target RNA in vivo. Alteration of the FinO domain stimulated the rapid turnover of ProQ by Lon-mediated proteolysis, suggesting a quality control mechanism that prevents the accumulation of nonfunctional ProQ molecules. We extend this observation to Hfq, the other major sRNA chaperone of enteric bacteria. The Hfq Y55A mutant protein, defective in RNA-binding and oligomerization, proved to be labile and susceptible to degradation by Lon. Taken together, our findings connect the major AAA+ family protease Lon with RNA-dependent quality control of Hfq and ProQ, the two major sRNA chaperones of Gram-negative bacteria

    Untersuchung der Molekularbiologie von FusobacteriumFusobacterium nucleatumnucleatum

    Full text link
    The anaerobe Fusobacterium nucleatum (F. nucleatum) is an important member of the oral microbiome but can also colonize different tissues of the human body. In particular, its association with multiple human cancers has drawn much attention. This association has prompted growing interest into the interaction of F. nucleatum with cancer, with studies focusing primarily on the host cells. At the same time, F. nucleatum itself remains poorly understood, which includes its transcriptomic architecture but also gene regulation such as global stress responses that typically enable survival of bacteria in new environments. An important aspect of such regulatory networks is the post-transcriptional regulation, which is entirely unknown in F. nucleatum. This paucity extents to any knowledge on small regulatory RNAs (sRNAs), despite their important role as post-transcriptional regulators of the bacterial physiology. Investigating the above stated aspects is further complicated by the fact that F. nucleatum is phylogenetically distant from all other bacteria, displays very limited genetic tractability and lacks genetic tools for dissecting gene function. This leaves many open questions on basic gene regulation in F. nucleatum, such as if the bacterium combines transcriptional and post-transcriptional regulation in its adaptation to a changing environment. To begin answering this question, this works elucidated the transcriptomic landscape of F. nucleatum by performing differential RNA-seq (dRNA-seq). Conducted for five representative strains of all F. nucleatum subspecies and the closely related F. periodonticum, the analysis globally uncovered transcriptional start sites (TSS), 5'untranslated regions (UTRs) and improved the existing annotation. Importantly, the dRNA-seq analysis also identified a conserved suite of sRNAs specific to Fusobacterium. The development of five genetic tools enabled further investigations of gene functions in F. nucleatum. These include vectors that enable the expression of different fluorescent proteins, inducible gene expression and scarless gene deletion in addition to transcriptional and translational reporter systems. These tools enabled the dissection of a Sigma E response and uncovered several commonalities with its counterpart in the phylogenetically distant Proteobacteria. The similarities include the upregulation of genes involved in membrane homeostasis but also a Simga E-dependent regulatory sRNA. Surprisingly, oxygen was found to activated Sigma E in F. nucleatum contrasting the typical role of the factor in envelope stress. The non-coding Sigma E-dependent sRNA, named FoxI, was shown to repress the translation of several envelope proteins which represented yet another parallel to the envelope stress response in Proteobacteria. Overall, this work sheds light on the RNA landscape of the cancer-associated bacterium leading to the discovery of a conserved global stress response consisting of a coding and a non-coding arm. The development of new genetic tools not only aided the latter discovery but also provides the means for further dissecting the molecular and infection biology of this enigmatic bacterium.Das anaerobe Bakterium Fusobacterium nucleatum (F. nucleatum) ist ein wichtiger Bestandteil des oralen Mikrobioms, kann aber auch verschiedene Gewebe des menschlichen Körpers besiedeln. Insbesondere seine Verbindung mit mehreren menschlichen Krebsarten hat viel Aufmerksamkeit auf sich gezogen. Diese Assoziation hat zu einem wachsenden Interesse an der Interaktion von F. nucleatum} mit Krebs geführt, wobei sich die Untersuchungen in erster Linie auf die Wirtszellen konzentrieren. Gleichzeitig ist F. nucleatum selbst nach wie vor schlecht verstanden, einschließlich seiner transkriptomischen Architektur, als auch der Genregulation, wie z. B. globale Stressreaktionen, die typischerweise das Überleben von Bakterien in neuen Umgebungen ermöglichen. Ein wichtiger Aspekt solcher regulatorischer Netzwerke ist die post-transkriptionelle Regulation, die bei F. nucleatum völlig unbekannt ist. Diese Unkenntnis erstreckt sich auch auf das Wissen über kleine regulatorische RNAs, trotz ihrer wichtigen Rolle als post-transkriptionelle Regulatoren der bakteriellen Physiologie. Die Untersuchung der oben genannten Aspekte wird zusätzlich durch die Tatsache erschwert, dass F. nucleatum phylogenetisch von allen anderen Bakterien weit entfernt ist, eine sehr begrenzte genetische Traktabilität aufweist und keine genetischen Werkzeuge zur Untersuchung der Genfunktion vorliegen. Dies führt zu vielen offenen Fragen bezüglich grundlegendener Genregulation in F. nucleatum, z. B. ob das Bakterium transkriptionelle und post-transkriptionelle Regulation kombiniert, um sich an eine sich verändernde Umwelt anzupassen. Als erster Schritt zur Beantwortung dieser Frage wurde in dieser Arbeit die transkriptomische Landschaft von F. nucleatum durch differential RNA-seq (dRNA-seq) aufgeklärt. Anhand von fünf repräsentativen Stämmen aller Unterarten von F. nucleatum und dem eng verwandten F. periodonticum wurden durch die Analyse global transkriptionelle Startstellen (TSS) und 5'untranslatierte Regionen (5'UTRs) aufgedeckt als auch die bestehende Annotation verbessert. Weiterhin konnte die dRNA-seq-Analyse auch eine konservierte Anzahl von Fusobacterium-spezifischen sRNAs identifizieren. Die Entwicklung von fünf genetischen Werkzeugen ermöglichte weitere Untersuchungen der Genfunktionen in F. nucleatum. Dazu gehören Vektoren, welche die Expression verschiedener fluoreszierender Proteine ermöglichen als auch Systeme für die induzierbare Genexpression, narbenlose Gendeletion sowie transkriptionelle und translationale Reportersysteme. Mit diesen Werkzeugen konnte die Sigma E Antwort entschlüsselt werden, welche mehrere Gemeinsamkeiten mit ihrem Gegenstück in den phylogenetisch entfernten Proteobakterien aufweist. Zu diesen Gemeinsamkeiten gehört die Hochregulierung von Genen, die an der Membranhomöostase beteiligt sind, aber auch eine Sigma E-abhängige regulatorische sRNA. Überraschenderweise wurde festgestellt, dass Sauerstoff Sigma E in F. nucleatum aktiviert, was im Gegensatz zu der typischen Rolle des σ\sigma-Faktors bei Membranstress steht. Die nicht-kodierende sRNA mit dem Namen FoxI, die von Sigma E abhängt, unterdrückt nachweislich die Translation verschiedener Membranproteine, was eine weitere Parallele zur Membranstressreaktion in Proteobakterien darstellt. Insgesamt wirft diese Arbeit Licht auf die RNA-Landschaft des krebsassoziierten Bakteriums und führt zur Entdeckung einer konservierten globalen Stressantwort, die aus einem kodierenden und einem nicht-kodierenden Arm besteht. Die Entwicklung neuer genetischer Werkzeuge hat nicht nur zu dieser Entdeckung beigetragen, sondern bietet auch die Möglichkeit, die Molekular- und Infektionsbiologie dieses rätselhaften Bakteriums weiter zu entschlüsseln

    RNA landscape of the emerging cancer-associated microbe Fusobacterium nucleatum.

    Full text link
    Fusobacterium nucleatum, long known as a constituent of the oral microflora, has recently garnered renewed attention for its association with several different human cancers. The growing interest in this emerging cancer-associated bacterium contrasts with a paucity of knowledge about its basic gene expression features and physiological responses. As fusobacteria lack all established small RNA-associated proteins, post-transcriptional networks in these bacteria are also unknown. In the present study, using differential RNA-sequencing, we generate high-resolution global RNA maps for five clinically relevant fusobacterial strains-F. nucleatum subspecies nucleatum, animalis, polymorphum and vincentii, as well as F. periodonticum-for early, mid-exponential growth and early stationary phase. These data are made available in an online browser, and we use these to uncover fundamental aspects of fusobacterial gene expression architecture and a suite of non-coding RNAs. Developing a vector for functional analysis of fusobacterial genes, we discover a conserved fusobacterial oxygen-induced small RNA, FoxI, which serves as a post-transcriptional repressor of the major outer membrane porin FomA. Our findings provide a crucial step towards delineating the regulatory networks enabling F. nucleatum adaptation to different environments, which may elucidate how these bacteria colonize different compartments of the human body

    Introducing differential RNA-seq mapping to track the early infection phase for Pseudomonas phage phi KZ

    Full text link
    As part of the ongoing renaissance of phage biology, more phage genomes are becoming available through DNA sequencing. However, our understanding of the transcriptome architecture that allows these genomes to be expressed during host infection is generally poor. Transcription start sites (TSSs) and operons have been mapped for very few phages, and an annotated global RNA map of a phage - alone or together with its infected host - is not available at all. Here, we applied differential RNA-seq (dRNA-seq) to study the early, host takeover phase of infection by assessing the transcriptome structure of Pseudomonas aeruginosa jumbo phage ɸKZ, a model phage for viral genetics and structural research. This map substantially expands the number of early expressed viral genes, defining TSSs that are active ten minutes after ɸKZ infection. Simultaneously, we record gene expression changes in the host transcriptome during this critical metabolism conversion. In addition to previously reported upregulation of genes associated with amino acid metabolism, we observe strong activation of genes with functions in biofilm formation (cdrAB) and iron storage (bfrB), as well as an activation of the antitoxin ParD. Conversely, ɸKZ infection rapidly down-regulates complexes IV and V of oxidative phosphorylation (atpCDGHF and cyoABCDE). Taken together, our data provide new insights into the transcriptional organization and infection process of the giant bacteriophage ɸKZ and adds a framework for the genome-wide transcriptomic analysis of phage-host interactions.status: publishe

    Introducing differential RNA-seq mapping to track the early infection phase for phage ɸKZ.

    Full text link
    As part of the ongoing renaissance of phage biology, more phage genomes are becoming available through DNA sequencing. However, our understanding of the transcriptome architecture that allows these genomes to be expressed during host infection is generally poor. Transcription start sites (TSSs) and operons have been mapped for very few phages, and an annotated global RNA map of a phage - alone or together with its infected host - is not available at all. Here, we applied differential RNA-seq (dRNA-seq) to study the early, host takeover phase of infection by assessing the transcriptome structure of Pseudomonas aeruginosa jumbo phage ɸKZ, a model phage for viral genetics and structural research. This map substantially expands the number of early expressed viral genes, defining TSSs that are active ten minutes after ɸKZ infection. Simultaneously, we record gene expression changes in the host transcriptome during this critical metabolism conversion. In addition to previously reported upregulation of genes associated with amino acid metabolism, we observe strong activation of genes with functions in biofilm formation (cdrAB) and iron storage (bfrB), as well as an activation of the antitoxin ParD. Conversely, ɸKZ infection rapidly down-regulates complexes IV and V of oxidative phosphorylation (atpCDGHF and cyoABCDE). Taken together, our data provide new insights into the transcriptional organization and infection process of the giant bacteriophage ɸKZ and adds a framework for the genome-wide transcriptomic analysis of phage-host interactions

    Combination of the Glutaminyl Cyclase Inhibitor PQ912 (Varoglutamstat) and the Murine Monoclonal Antibody PBD-C06 (m6) Shows Additive Effects on Brain Aβ Pathology in Transgenic Mice

    Full text link
    Compelling evidence suggests that pyroglutamate-modified Aβ (pGlu3-Aβ; AβN3pG) peptides play a pivotal role in the development and progression of Alzheimer’s disease (AD). Approaches targeting pGlu3-Aβ by glutaminyl cyclase (QC) inhibition (Varoglutamstat) or monoclonal antibodies (Donanemab) are currently in clinical development. Here, we aimed at an assessment of combination therapy of Varoglutamstat (PQ912) and a pGlu3-Aβ-specific antibody (m6) in transgenic mice. Whereas the single treatments at subtherapeutic doses show moderate (16–41%) but statistically insignificant reduction of Aβ42 and pGlu-Aβ42 in mice brain, the combination of both treatments resulted in significant reductions of Aβ by 45–65%. Evaluation of these data using the Bliss independence model revealed a combination index of ≈1, which is indicative for an additive effect of the compounds. The data are interpreted in terms of different pathways, in which the two drugs act. While PQ912 prevents the formation of pGlu3-Aβ in different compartments, the antibody is able to clear existing pGlu3-Aβ deposits. The results suggest that combination of the small molecule Varoglutamstat and a pE3Aβ-directed monoclonal antibody may allow a reduction of the individual compound doses while maintaining the therapeutic effect

    An RNA-centric global view of Clostridioides difficile reveals broad activity of Hfq in a clinically important gram-positive bacterium.

    Get PDF
    The gram-positive human pathogen Clostridioides difficile has emerged as the leading cause of antibiotic-associated diarrhea. However, little is known about the bacterium's transcriptome architecture and mechanisms of posttranscriptional control. Here, we have applied transcription start site and termination mapping to generate a single-nucleotide-resolution RNA map of C. difficile 5' and 3' untranslated regions, operon structures, and noncoding regulators, including 42 sRNAs. Our results indicate functionality of many conserved riboswitches and predict cis-regulatory RNA elements upstream of multidrug resistance (MDR)-type ATP-binding cassette (ABC) transporters and transcriptional regulators. Despite growing evidence for a role of Hfq in RNA-based gene regulation in C. difficile, the functions of Hfq-based posttranscriptional regulatory networks in gram-positive pathogens remain controversial. Using Hfq immunoprecipitation followed by sequencing of bound RNA species (RIP-seq), we identify a large cohort of transcripts bound by Hfq and show that absence of Hfq affects transcript stabilities and steady-state levels. We demonstrate sRNA expression during intestinal colonization by C. difficile and identify infection-related signals impacting its expression. As a proof of concept, we show that the utilization of the abundant intestinal metabolite ethanolamine is regulated by the Hfq-dependent sRNA CDIF630nc_085. Overall, our study lays the foundation for understanding clostridial riboregulation with implications for the infection process and provides evidence for a global role of Hfq in posttranscriptional regulation in a gram-positive bacterium

    Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression.

    Full text link
    Fusobacterium nucleatum is an oral anaerobe recently found to be prevalent in human colorectal cancer (CRC) where it is associated with poor treatment outcome. In mice, hematogenous F. nucleatum can colonize CRC tissue using its lectin Fap2, which attaches to tumor-displayed Gal-GalNAc. Here, we show that Gal-GalNAc levels increase as human breast cancer progresses, and that occurrence of F. nucleatum gDNA in breast cancer samples correlates with high Gal-GalNAc levels. We demonstrate Fap2-dependent binding of the bacterium to breast cancer samples, which is inhibited by GalNAc. Intravascularly inoculated Fap2-expressing F. nucleatum ATCC 23726 specifically colonize mice mammary tumors, whereas Fap2-deficient bacteria are impaired in tumor colonization. Inoculation with F. nucleatum suppresses accumulation of tumor infiltrating T cells and promotes tumor growth and metastatic progression, the latter two of which can be counteracted by antibiotic treatment. Thus, targeting F. nucleatum or Fap2 might be beneficial during treatment of breast cancer
    corecore