17 research outputs found

    Hepatic excretory function in sepsis: implications from biophotonic analysis of transcellular xenobiotic transport in a rodent model

    Get PDF
    INTRODUCTION: Hepatobiliary elimination of endo- and xenobiotics is affected by different variables including hepatic perfusion, hepatocellular energy state and functional integrity of transporter proteins, all of which are altered during sepsis. A particular impairment of hepatocellular transport at the canalicular pole resulting in an accumulation of potentially hepatotoxic compounds would have major implications for critical care pharmacology and diagnostics. METHODS: Hepatic transcellular transport, that is, uptake and hepatobiliary excretion, was studied in a rodent model of severe polymicrobial sepsis by two different biophotonic techniques to obtain insights into the handling of potentially toxic endo- and xenobiotics in sepsis. Direct and indirect in vivo imaging of the liver was performed by intravital multifluorescence microscopy and non-invasive whole-body near-infrared (NIRF) imaging after administration of two different, primarily hepatobiliary excreted xenobiotics, the organic anionic dyes indocyanine green (ICG) and DY635. Subsequent quantitative data analysis enabled assessment of hepatic uptake and fate of these model substrates under conditions of sepsis. RESULTS: Fifteen hours after sepsis induction, animals displayed clinical and laboratory signs of multiple organ dysfunction, including moderate liver injury, cholestasis and an impairment of sinusoidal perfusion. With respect to hepatocellular transport of both dyes, excretion into bile was significantly delayed for both dyes and resulted in net accumulation of potentially cytotoxic xenobiotics in the liver parenchyma (for example, specific dye fluorescence in liver at 30 minutes in sham versus sepsis: ICG: 75% versus 89%; DY635 20% versus 40% of maximum fluorescence; P < 0.05). Transcutaneous assessment of ICG fluorescence by whole body NIRF imaging revealed a significant increase of ICG fluorescence from the 30th minute on in the bowel region of the abdomen in sham but not in septic animals, confirming a sepsis-associated failure of canalicular excretion. CONCLUSIONS: Hepatocytes accumulate organic anions under conditions of sepsis-associated organ dysfunction. These results have potential implications for monitoring liver function, critical care pharmacology and the understanding of drug-induced liver injury in the critically ill

    Understanding the biases to sepsis surveillance and quality assurance caused by inaccurate coding in administrative health data

    Get PDF
    Purpose Timely and accurate data on the epidemiology of sepsis are essential to inform policy decisions and research priorities. We aimed to investigate the validity of inpatient administrative health data (IAHD) for surveillance and quality assurance of sepsis care. Methods We conducted a retrospective validation study in a disproportional stratified random sample of 10,334 inpatient cases of age ≥ 15 years treated in 2015–2017 in ten German hospitals. The accuracy of coding of sepsis and risk factors for mortality in IAHD was assessed compared to reference standard diagnoses obtained by a chart review. Hospital-level risk-adjusted mortality of sepsis as calculated from IAHD information was compared to mortality calculated from chart review information. Results ICD-coding of sepsis in IAHD showed high positive predictive value (76.9–85.7% depending on sepsis definition), but low sensitivity (26.8–38%), which led to an underestimation of sepsis incidence (1.4% vs. 3.3% for severe sepsis-1). Not naming sepsis in the chart was strongly associated with under-coding of sepsis. The frequency of correctly naming sepsis and ICD-coding of sepsis varied strongly between hospitals (range of sensitivity of naming: 29–71.7%, of ICD-diagnosis: 10.7–58.5%). Risk-adjusted mortality of sepsis per hospital calculated from coding in IAHD showed no substantial correlation to reference standard risk-adjusted mortality (r = 0.09). Conclusion Due to the under-coding of sepsis in IAHD, previous epidemiological studies underestimated the burden of sepsis in Germany. There is a large variability between hospitals in accuracy of diagnosing and coding of sepsis. Therefore, IAHD alone is not suited to assess quality of sepsis care

    Comparison of sepsis-induced transcriptomic changes in a murine model to clinical blood samples identifies common response patterns

    No full text
    Experimental models, mimicking physiology and molecular dynamics of diseases in human, harbor the possibility to study the effect of interventions and transfer results from bench to bedside. Recent advances in high-throughput technologies, standardized protocols and inte-gration of knowledge from databases yielded rising consistency and usability of results for inter-species comparisons. Here, we explored similarities and dissimilarities in gene expres-sion from blood samples of a murine sepsis model (peritoneal contamination and infection, PCI) and patients from the pediatric intensive care unit (PICU) measured by microarrays. Applying a consistent pre-processing and analysis workflow, differentially expressed genes (DEG) from PCI and PICU data significantly overlapped. A major fraction of DEG was commonly expressed and mapped to adaptive and innate immune response related pathways, whereas the minor fraction, including the chemokine (C-C motif) ligand 4, exhibited constant inter-species disparities. Reproducibility of transcriptomic observations was validated experimentally in PCI. These data underline, that inter-species comparison can obtain commonly expressed transcriptomic features despite missing homologues and different protocols. Our findings point towards a high suitability of an animal sepsis model and further experimental efforts in order to transfer results from animal experiments to the bedside

    Hyperresponsiveness of mice defi cient in plasma-secreted sphingomyelinase reveals its pivotal role in early phase of host response

    No full text
    Plasma secretion of acid sphingomyelinase is a hallmark of cellular stress response resulting in the formation of membrane embedded ceramide-enriched lipid rafts and the reorganization of receptor complexes. Consistently, decompartmentalization of ceramide formation from inert sphingomyelin has been associated with signaling events and regulation of the cellular phenotype. Herein, we addressed the question of whether the secretion of acid sphingomyelinase is involved in host response during sepsis. We found an exaggerated clinical course in mice genetically deficient in acid sphingomyelinase characterized by an increased bacterial burden, an increased phagocytotic activity, and a more pronounced cytokine storm. Moreover, on a functional level, leukocyte-endothelial interaction was found diminished in sphingomyelinase-deficient animals corresponding to a distinct leukocytes’ phenotype with respect to rolling and sticking as well as expression of cellular surface proteins. We conclude that hydrolysis of membrane-embedded sphingomyelin, triggered by circulating sphingomyelinase, plays a pivotal role in the first line of defense against invading microorganisms. This function might be essential during the early phase of infection leading to an adaptive response of remote cells and tissues

    Liver dysfunction and phosphatidylinositol-3-kinase signalling in early sepsis: experimental studies in rodent models of peritonitis

    Get PDF
    BACKGROUND: Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. METHODS AND FINDINGS: In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). CONCLUSIONS: Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors' Summary

    Polymicrobial sepsis causes deranged bile acid conjugation and transport.

    No full text
    <p>At 15 h after sepsis induction, plasma, liver tissue, and bile were subjected to targeted metabolomics. Expression of BAAT, facilitating conjugation to taurine and glycine, was quantified by immunoblotting. (A) The plot depicts median log<sub>2</sub> fold changes of unconjugated as well as glycine- and taurine-conjugated bile acid in plasma, liver, and bile, comparing septic to sham-operated rats (<i>n</i> = 12 per group, *<i>p</i><0.05 or **<i>p</i><0.01 compared to sham). (B) Conjugation index as a surrogate for the observed conjugation defect reflected by the ratio of unconjugated bile acids CA and CDCA to the corresponding taurine (TCA and taurochenodeoxycholic acid) and glycine (GCA and glycochenodeoxycholic acid) conjugates in plasma, liver and bile (ratio given as log<sub>2</sub> fold change, <i>n</i> = 12 per group). (C and D) Representative immunoblots of BAAT 15 h after sepsis induction in cytosolic (c) as well as peroxisomal (p) fractions, with corresponding densitometric analysis (<i>n</i> = 5 for sham, <i>n</i> = 8 for sepsis; BAAT (c): *<i>p</i> = 0.002; BAAT (p): *<i>p</i> = 0.006 compared to sham). Densitomentric values are normalised to β-actin. DCA, deoxycholic acid; GDCA, glycodeoxycholic acid; GCDCA, glycochenodeoxycholic acid; GLCA, glycolithocholic acid; GLCAS, glycolithocholic acid sulphate; GUDCA, glycoursodeoxycholic acid; TCDCA, taurochenodeoxycholic acid; TLCA, taurolithocholic acid; TLCAS, taurolithocholic acid sulphate; TUDCA, tauroursodeoxycholic acid; UDCA, ursodeoxycholic acid.</p

    Plasma bilirubin and (un)conjugated bile acid levels in patients on the day of diagnosis of severe sepsis.

    No full text
    <p>(A) The plot depicts median log<sub>2</sub> fold changes of bilirubin (Bili), and unconjugated as well as glycine- and taurine-conjugated bile acid quantities in plasma of severely septic patients (<i>n</i> = 48) fulfilling American College of Chest Physicians/Society of Critical Care Medicine consensus criteria compared to non-septic controls (<i>n</i> = 20) (*<i>p</i><0.05 compared to controls). (B) Receiver operating characteristics of bilirubin, CDCA, TDCA, or the combined performance of CDCA+TDCA in predicting 28-d mortality. DCA, deoxycholic acid; GDCA, glycodeoxycholic acid; GCDCA, glycochenodeoxycholic acid; GLCA, glycolithocholic acid; GLCAS, glycolithocholic acid sulphate; GUDCA, glycoursodeoxycholic acid; TCDCA, taurochenodeoxycholic acid; TLCA, taurolithocholic acid; TLCAS, taurolithocholic acid sulphate; TUDCA, tauroursodeoxycholic acid; UDCA, ursodeoxycholic acid.</p
    corecore