692 research outputs found
Strong CH^+ J = 1â0 emission and absorption in DR21
We report the first detection of the ground-state rotational transition of the methylidyne cation CH^+ towards the massive star-forming region DR 21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission line, in addition to two deep and broad absorption features associated with the DR 21 molecular ridge and foreground gas. These observations allow us to determine a ^(12)CH^(+)J = 1â0 line frequency of Îœ = 835â137 ± 3 MHz, in good agreement with a recent experimental determination. We estimate the CH^+ column density to be a few 10^(13) cm^(-2) in the gas seen in emission, and >10^(14) cm^(-2) in the components responsible for the absorption, which is indicative of a high line of sight average abundance [CH^+] /[H] > 1.2 Ă 10^(-8). We show that the CH^+ column densities agree well with the predictions of state-of-the-art C-shock models in dense UV-illuminated gas for the emission line, and with those of turbulent dissipation models in diffuse gas for the absorption lines
Intermittency of interstellar turbulence: extreme velocity-shears and CO emission on milliparsec scale
The condensation of diffuse gas into molecular clouds occurs at a rate driven
largely by turbulent dissipation. This process still has to be caught in action
and characterized. A mosaic of 13 fields was observed in the CO(1-0) line with
the IRAM-PdB interferometer in the translucent environment of two low-mass
dense cores. The large size of the mosaic compared to the resolution (4 arcsec)
is unprecedented in the study of the small-scale structure of diffuse molecular
gas. Eight weak and elongated structures of thicknesses as small as 3 mpc (600
AU) and lengths up to 70mpc are found. These are not filaments because once
merged with short-spacing data, they appear as the sharp edges of larger-scale
structures. Six out of eight form quasi-parallel pairs at different velocities
and different position angles. This cannot be the result of chance alignment.
The velocity-shears estimated for the three pairs include the highest ever
measured far from star forming regions (780 km/s/pc). Because the large scale
structures have sharp edges, with little or no overlap, they have to be thin
CO-layers. Their edges mark a sharp transition between a CO-rich component and
a gas undetected in the CO line because of its low CO abundance, presumably the
cold neutral medium. We propose that these sharp edges are the first
directly-detected manifestations of the intermittency of interstellar
turbulence. The large velocity-shears reveal an intense straining field,
responsible for a local dissipation rate several orders of magnitude above
average, possibly at the origin of the thin CO-layers.Comment: 16 pages, 11 figures, Accepted for publication in Astronomy and
Astrophysic
Fragmented molecular complexes: The role of the magnetic field in feeding internal supersonic motions
A hierarchical structure for molecular complexes in their cold phase i.e., preceeding the formation of massive stars, was derived from extensive large scale CO(13)(J=1=0) observations: the mass is found to be distributed into virialized clouds which fill only a very low fraction approx. 01 of the volume of the complex and are supported against gravity by internal supersonic motions. An efficient mechanism was found to transfer kinetic energy from the orbital motions of the clouds to their internal random motions. The large perturbations of the magnetic field induced at the cloud boundaries by their interactions with their neighbors generate systems of hydromagnetic waves trapped inside the clouds. The magnetic field lines being closely coupled to the gas at the densities which prevail in the bulk of the clouds volume, internal velocity dispersion is thus generated. Some conclusions derived from this data are given
Post-T Tauri stars: a false problem
We consider the problem of the apparent lack of old T Tauri stars in low-mass
star forming regions in the framework of the standard model of low-mass star
formation. We argue that the similarity between molecular cloud lifetime and
ambipolar diffusion timescale implies that star formation does not take place
instantaneously, nor at a constant rate. We conclude that the probability of
finding a large population of old stars in a star forming region is
intrinsically very small and that the post-T Tauri problem is by and large not
existent.Comment: 6 pages (LaTeX), no Figures to be published in The Astrophysical
Journal Letter
Molecular hydrogen as baryonic dark matter
High-angular resolution CO observations of small-area molecular structures
(SAMS) are presented. The feature-less structures seen in the single-dish
measurements break up into several smaller clumps in the interferometer map. At
an adopted distance of 100pc their sizes are of order a few hundred AU, some of
which are still unresolved at an angular resolution of about 3". The clumps
have a fractal structure with a fractal index between 1.7 and 2.0. Their
kinetic temperature is between 7K and 18K. Adopting standard conversion factors
masses are about 1/10 Jupiter-masses for individual clumps and densities are
higher than 20000cm^{-3}. The clumps are highly overpressured and it is unknown
what creates or maintains such structures.Comment: 8 pages, 1 figure, accepted by Astrophysical Journal Letter
Dissipative structures of diffuse molecular gas: I - Broad HCO(1-0) emission
Results: We report the detection of broad HCO+(1-0) lines (10 mK < T < 0.5
K). The interpretation of 10 of the HCO+ velocity components is conducted in
conjunction with that of the associated optically thin 13CO emission. The
derived HCO+ column densities span a broad range, , and the inferred HCO+ abundances, , are more than one order of magnitude above
those produced by steady-state chemistry in gas weakly shielded from UV
photons, even at large densities. We compare our results with the predictions
of non-equilibrium chemistry, swiftly triggered in bursts of turbulence
dissipation and followed by a slow thermal and chemical relaxation phase,
assumed isobaric. The set of values derived from the observations, i.e. large
HCO+ abundances, temperatures in the range of 100--200 K and densities in the
range 100--1000 cm3, unambiguously belongs to the relaxation phase. The
kinematic properties of the gas suggest in turn that the observed HCO+ line
emission results from a space-time average in the beam of the whole cycle
followed by the gas and that the chemical enrichment is made at the expense of
the non-thermal energy. Last, we show that the "warm chemistry" signature (i.e
large abundances of HCO+, CH+, H20 and OH) acquired by the gas within a few
hundred years, the duration of the impulsive chemical enrichment, is kept over
more than thousand years. During the relaxation phase, the \wat/OH abundance
ratio stays close to the value measured in diffuse gas by the SWAS satellite,
while the OH/HCO+ ratio increases by more than one order of magnitude.Comment: 14 page
Diffuse infrared emission of the galaxy: Large scale properties
The Infrared Astronomy Satellite (IRAS) survey is used to study large scale properties and the origin of the diffuse emission of the Galaxy. A careful subtraction of the zodiacal light enables longitude profiles of the galactic emission at 12, 25, 60, and 100 microns to be presented
MFGA-IDT2 workshop: Astrophysical and geophysical fluid mechanics: the impact of data on turbulence theories
International audience1 Facts about the Workshop This workshop was convened on November 13-15 1995 by E. Falgarone and D. Schertzer within the framework of the Groupe de Recherche Mecanique des Fluides Geophysiques et Astrophysiques (GdR MFGA, Research Group of Geophysical and Astrophysical Fluid Mechanics) of Centre National de la Recherche Scientifique (CNRS, (French) National Center for Scientific Research). This Research Group is chaired by A. Babiano and the meeting was held at Ecole Normale Superieure, Paris, by courtesy of its Director E. Guyon. More than sixty attendees participated to this workshop, they came from a large number of institutions and countries from Europe, Canada and USA. There were twenty-five oral presentations as well as a dozen posters. A copy of the corresponding book of abstracts can be requested to the conveners. The theme of this meeting is somewhat related to the series of Nonlinear Variability in Geophysics conferences (NVAG1, Montreal, Aug. 1986; NVAG2, Paris, June 1988; NVAG3, Cargese (Corsica), September, 1993), as well as seven consecutive annual sessions at EGS general assemblies and two consecutive spring AGU meeting sessions devoted to similar topics. One may note that NVAG3 was a joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first topical conference jointly sponsored by the two organizations. The corresponding proceedings were published in a special NPG issue (Nonlinear Processes in Geophysics 1, 2/3, 1994). In comparison with these previous meetings, MFGA-IDT2 is at the same time specialized to fluid turbulence and its intermittency, and an extension to the fields of astrophysics. Let us add that Nonlinear Processes in Geophysics was readily chosen as the appropriate journal for publication of these proceedings since this journal was founded in order to develop interdisciplinary fundamental research and corresponding innovative nonlinear methodologies in Geophysics. It had an appropriate editorial structure, in particular a large number of editors covering a wide range of methodologies, expertises and schools. At least two of its sections (Scaling and Multifractals, Turbulence and Diffusion) were directly related to the topics of the workshop, in any case contributors were invited to choose their editor freely. 2 Goals of the Workshop The objective of this meeting was to enhance the confrontation between turbulence theories and empirical data from geophysics and astrophysics fluids with very high Reynolds numbers. The importance of these data seems to have often been underestimated for the evaluation of theories of fully developed turbulence, presumably due to the fact that turbulence does not appear as pure as in laboratory experiments. However, they have the great advantage of giving access not only to very high Reynolds numbers (e.g. 1012 for atmospheric data), but also to very large data sets. It was intended to: (i) provide an overview of the diversity of potentially available data, as well as the necessary theoretical and statistical developments for a better use of these data (e.g. treatment of anisotropy, role of processes which induce other nonlinearities such as thermal instability, effect of magnetic field and compressibility ... ), (ii) evaluate the means of discriminating between different theories (e.g. multifractal intermittency models) or to better appreciate the relevance of different notions (e.g. Self-Organized Criticality) or phenomenology (e.g. filaments, structures), (iii) emphasise the different obstacles, such as the ubiquity of catastrophic events, which could be overcome in the various concerned disciplines, thanks to theoretical advances achieved. 3 Outlines of the Workshop During the two days of the workshop, the series of presentations covered many manifestations of turbulence in geophysics, including: oceans, troposphere, stratosphere, very high atmosphere, solar wind, giant planets, interstellar clouds... up to the very large scale of the Universe. The presentations and the round table at the end of the workshop pointed out the following: - the necessity of this type of confrontation which makes intervene numerical simulations, laboratory experiments, phenomenology as well as a very large diversity of geophysical and astrophysical data, - presumably a relative need for new geophysical data, whereas there have been recent astrophysical experiments which yield interesting data and exciting questions; - the need to develop a closer intercomparison between various intermittency models (in particular Log-Poisson /Log Levy models). Two main questions were underlined, in particular during the round table: - the behaviour of the extremes of intermittency, in particular the question of divergence or convergence of the highest statistical moments (equivalently, do the probability distributions have algebraic or more rapid falloffs?); - the extension of scaling ranges; in other words do we need to divide geophysics and astrophysics in many small (nearly) isotropic subranges or is it sufficient to use anisotropic scaling notions over wider ranges? 4 The contributions in this special issue Recalling that some of the most useful insights into the nature of turbulence in fluids have come from observations of geophysical flows, Van Atta gives a review of the impacts of geophysical turbulence data into theories. His paper starts from Taylor's inference of the nearly isotropy of atmospheric turbulence and the corresponding elegant theoretical developments by von Karman of the theory of isotropic turbulence, up to underline the fact that the observed extremely large intermittency in geophysical turbulence also raised new fundamental questions for turbulence theory. The paper discusses the potential contribution to theoretical development from the available or currently being made geophysical turbulence measurements, as well as from some recent laboratory measurements and direct numerical simulations of stably stratified turbulent shear flows. Seuront et al. consider scaling and multiscaling properties of scalar fields (temperature and phytoplankton concentration) advected by oceanic turbulence in both Eulerian and Lagrangian frameworks. Despite the apparent complexity linked to a multifractal background, temperature and fluorescence (i.e. phytoplankton biomass surrogate) fields are expressed over a wide range of scale by only three universal multifractal parameters, H, \alpha and C_l. On scales smaller than the characteristic scale of the ship, sampling is rather Eulerian. On larger scales, the drifting platform being advected by turbulent motions, sampling may be rather considered as Lagrangian. Observed Eulerian and Lagrangian universal multifractal properties of the physical and biological fields are discussed. Whereas theoretical models provide different scaling laws for fluid and MHD turbulent flows, no attempt has been done up to now to experimentally support evidence for these differences. Carbone et al. use measurements from the solar wind turbulence and from turbulence in ordinary fluid flows, in order to assess these differences. They show that the so-called Extended Self-Similarity (ESS) is evident in the solar wind turbulence up to a certain scale. Furthermore, up to a given order of the velocity structure functions, the scaling laws of MHD and fluids flows axe experimentally indistinguishable. However, differences can be observed for higher orders and the authors speculate on their origin. Dudok de Wit and Krasnosel'skikh present analysis of strong plasma turbulence in the vicinity of the Earth's bow shock with the help of magnetometer data from the AMPTE UKS satellite. They demonstrate that there is a departure from Gaussianity which could be a signature of multifractality. However, they point out that the complexity of plasma turbulence precludes a more quantitative understanding. Finally, the authors emphasise the fact that the duration of records prevents to obtain any reliable estimate of structure functions beyond the fourth order. Sylos Labini and Pietronero discuss the problem of galaxy correlations. They conclude from all the recently available three dimensional catalogues that the distribution of galaxies and clusters is fractal with dimension D ~ 2 up to the present observational limits without any tendency towards homogenization. This result is discussed in contrast to angular data analysis. Furthermore, they point out that the galaxy-cluster mismatch disappears when considering a multifractal distribution of matter. They emphasise that a new picture emerges which changes the standard ideas about the properties of the universe and requires a corresponding change in the related theoretical concepts. Chilla et al. investigate with the help of a laboratory experiment the possible influence of the presence of a large scale structure on the intermittency of small scale structures. They study a flow between coaxial co-rotating disks generating a strong axial vortex over a turbulent background. They show that the cascade process is preserved although strongly modified and they discuss the relevance of parameters developed for the description of intermittency in homogeneous turbulence to evaluate this modification
- âŠ