48 research outputs found

    Plasma heating in the very early phase of solar flares

    Full text link
    In this paper we analyze soft and hard X-ray emission of the 2002 September 20 M1.8 GOES class solar flare observed by RHESSI and GOES satellites. In this flare event, soft X-ray emission precedes the onset of the main bulk hard X-ray emission by ~5 min. This suggests that an additional heating mechanism may be at work at the early beginning of the flare. However RHESSI spectra indicate presence of the non-thermal electrons also before impulsive phase. So, we assumed that a dominant energy transport mechanism during rise phase of solar flares is electron beam-driven evaporation. We used non-thermal electron beams derived from RHESSI spectra as the heating source in a hydrodynamic model of the analyzed flare. We showed that energy delivered by non-thermal electron beams is sufficient to heat the flare loop to temperatures in which it emits soft X-ray closely following the GOES 1-8 A light-curve. We also analyze the number of non-thermal electrons, the low energy cut-off, electron spectral indices and the changes of these parameters with time.Comment: Comments: 17 pages, 5 figures, The Astrophysical Journal Letters (accepted, October 2009

    RESIK and RHESSI observations of the 20 September 2002 flare

    Full text link
    Soft X-ray spectra 3.33 A - 6.15 A from the RESIK instrument on CORONAS-F constitute a unique database for the study of the physical conditions of solar flare plasmas, enabling the calculation of differential emission measures. The two RESIK channels for the shortest wavelengths overlap with the lower end of RHESSI spectral energy range, which is located around 3 keV, making it possible to compare both data sets. We aim to compare observations from RESIK and RHESSI spectrometers and cross-correlate these instruments. Observations are compared with synthetic spectra calculated based on the results of one-dimensional hydrodynamical (1D-HD) modelling. The analysis was performed for the flare on 20 September 2002. We estimated the geometry of the flaring loop, necessary for 1D-HD modelling, based on images from RHESSI and SOHO/EIT. The distribution of non-thermal electrons (NTEs) was determined from RHESSI spectra. The 1D-HD model assumes that non-thermal electrons with a power-law spectrum were injected at the apex of the flaring loop. The NTEs then heat and evaporate the chromosphere, filling the loop with hot and dense plasma radiating in soft X-rays. The total energy of electrons was constrained by comparing observed and calculated fluxes from GOES 1 - 8 A data. We determined the temperature and density at every point of the flaring loop throughout the evolution of the flare, calculating the resulting X-ray spectra. The synthetic spectra calculated based on the results of hydrodynamic modelling for the 20 September 2002 flare are consistent within a factor of two with the observed RESIK spectra during most of the duration of the flare. This discrepancy factor is probably related to the uncertainty on the cross-calibration between RESIK and RHESSI instruments

    Plasma heating in the very early and decay phases of solar flares

    Full text link
    In this paper we analyze the energy budgets of two single-loop solar flares under the assumption that non-thermal electrons are the only source of plasma heating during all phases of both events. The flares were observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Geostationary Operational Environmental Satellite (GOES) on September 20, 2002 and March 17, 2002, respectively. For both investigated flares we derived the energy fluxes contained in non-thermal electron beams from the RHESSI observational data constrained by observed GOES light-curves. We showed that energy delivered by non-thermal electrons was fully sufficient to fulfil the energy budgets of the plasma during the pre-heating and impulsive phases of both flares as well as during the decay phase of one of them. We concluded that in the case of the investigated flares there was no need to use any additional ad-hoc heating mechanisms other than heating by non-thermal electrons.Comment: 22 pages, 10 figures, The Astrophysical Journal (accepted, March 2011

    Relationship between non-thermal electron energy spectra and GOES classes

    Full text link
    We investigate the influence of the variations of energy spectrum of non-thermal electrons on the resulting GOES classes of solar flares. Twelve observed flares with various soft to hard X-ray emission ratios were modelled using different non-thermal electron energy distributions. Initial values of the flare physical parameters including geometrical properties were estimated using observations. We found that, for a fixed total energy of non-thermal electrons in a flare, the resulting GOES class of the flare can be changed significantly by varying the spectral index and low energy cut-off of the non-thermal electron distribution. Thus, the GOES class of a flare depends not only on the total non-thermal electrons energy but also on the electron beam parameters. For example, we were able to convert a M2.7 class solar flare into a merely C1.4 class one and a B8.1 class event into a C2.6 class flare. The results of our work also suggest that the level of correlation between the cumulative time integral of HXR and SXR fluxes can depend on the considered HXR energy range.Comment: 8 pages, 5 figures, Astronomy and Astrophysics (accepted, March 2009

    Temporal variations of the CaXIX spectra in solar flares

    Full text link
    Standard model of solar flares comprises a bulk expansion and rise of abruptly heated plasma (the chromospheric evaporation). Emission from plasma ascending along loops rooted on the visible solar disk should be often dominated, at least temporally, by a blue-shifted emission. However, there is only a very limited number of published observations of solar flares having spectra in which the blue-shifted component dominates the stationary one. In this work we compare observed X-ray spectra of three solar flares recorded during their impulsive phases and relevant synthetic spectra calculated using one-dimensional hydro-dynamic numerical model of these flares. The main aim of the work was to explain why numerous flares do not show blue-shifted spectra. The synthesized BCS spectra of the flares were compared with the relevant observed BCS spectra. We conclude that stationary component of the spectrum should be observed almost for all flares during their early phases of evolution. In opposite, the blue-shifted component of the spectrum could be not detected in flares having plasma rising along the flaring loop even with high velocity due to the geometrical dependences only. After the start of the up-flow motion, the blue-shifted component dominate temporally the synthetic spectra of the investigated flares at their early phases.Comment: 9 pages, 6 figures, Astronomy and Astrophysics (accepted, September 2009

    Neupert effect in solar flares

    Full text link
    International audienc
    corecore