3 research outputs found

    Structural behavior of high-strength concrete corbels involving steel fibers or closed stirrups

    Get PDF
    A comprehensive experimental evaluation of the shear behavior of corbels made by high-strength concrete (HSC) with steel fiber or with stirrups was investigated. Thirteen samples were prepared and tested, the main variables in this research were steel fiber type, steel fiber content (Vf %), and amount of horizontal closed stirrups (Ah). The constants in this investigation were the area of the main steel reinforcement (As), ratio of shear span to depth (a/d) and cube concrete strength (fcu). The obtained results clearly showed that, the presence of fibers or closed stirrups enhanced the strength and decreased the deformation of the explored specimens. It was concluded that the horizontal shear reinforcement can be substituted by supplementation of steel fibers to RHSC corbels. A comparison was performed between the test results and estimated shear capacity by ACI code and other adopted equations. Very conservative shear strength values were obtained from ACI 318–19 for corbels prepared with high-strength concrete because the strut and tie method were influenced by concrete strength and did not take the contribution of closed stirrups into account. However, the shear friction method depends only on the quantity of the main steel reinforcement and closed stirrups. Russo [2] proposed a model that adequately predicted the ultimate force of high-strength RC corbels incorporating closed stirrups, but this model did not take the effect of steel fibers into account. Campione [3] added the effect of steel fibers by means of the residual tensile strength expression

    Destructive and Nondestructive Tests for Concrete Containing a Various Types of Fibers

    Get PDF
    Fibers have been considered an effective material that was used to improve the concrete's weak properties, namely its tensile strength, ductility, and crack resistance. Thus, the current study highlights two major objective, the former is the fibers shapes and types on the mechanical properties of the fresh and hardened concrete while the latter explores the impact of the fiber contents on the concrete mechanical properties developments. To achieve these targets six types of fibers (five of them made of steel and the last was polyolefin fibers) with various shapes are utilized. The tests were carried out to investigate the fibers shape and material contribution in the concrete mix properties improvement. The samples were subjected to destructive and non-destructive tests such as workability, compression, bending, and splitting. The non-destructive tests include ultrasonic pulse velocities and the Schmidt Hammer test. Three kinds of fibers (two of steel and one of polyolefin fiber) are used with variable content ratios of 0.5, 0.75, 1.0, and 1.5% to study the fiber content effect. Generally, the workability of fresh concrete has a reverse relationship with fiber presence and fiber content ratios. The compressive capacity, splitting and flexural strength has a direct proportion with fibers contents. The hooked steel fibers appeared the best results in terms of shape comparison. Doi: 10.28991/CEJ-2022-08-11-07 Full Text: PD

    Effects of Fiber Type and Shape on the Shear Behavior of Reinforced Concrete Corbels without Hoop Re-bars

    Get PDF
    In this research, the structural behavior of reinforced concrete brackets cast with concrete containing different types of fibers was studied. Seven samples of reinforced concrete corbels were cast and tested. One specimen was cast without fiber as a reference, and the other samples were made with six different types of fibers at a constant volume fraction (1% of the total concrete volume). The fibers used in the research were made of two different materials: steel and polyolefin. One specimen was cast with polyolefin fiber, and in the five remaining samples, steel fiber was used. Straight, crimped, and three different dimensions of hooked fiber were used. The results showed that the corbels with straight and hooked end steel fiber (6, 5, and 3 cm length), crimped steel fiber sized 3 cm, straight steel fiber sized 12 mm, and straight polyolefin fiber sized 6 cm showed 69.2%, 57.7%, 38.5%, 61.5%, 92.3%, and 100% higher cracking loads than the control corbel made with normal concrete, respectively, as well as exhibiting (51.7%, 48.3%, 31.0%, 24.1%, 12.1%, and 3.4%) higher ultimate loads than the control corbel. From these results, it can be concluded that the shape of the steel fiber clearly affects the ultimate load. For the same length, and despite the lack of aspect ratio, steel fibers gave an increase in the maximum load of 46.6% when compared with polyolefin fibers. Doi: 10.28991/CEJ-2022-08-03-08 Full Text: PD
    corecore