68 research outputs found

    Variations in Mre11/Rad50/Nbs1 status and DNA damage-induced S-phase arrest in the cell lines of the NCI60 panel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Mre11/Rad50/Nbs1 (MRN) complex is a regulator of cell cycle checkpoints and DNA repair. Defects in MRN can lead to defective S-phase arrest when cells are damaged. Such defects may elicit sensitivity to selected drugs providing a chemical synthetic lethal interaction that could be used to target therapy to tumors with these defects. The goal of this study was to identify these defects in the NCI60 panel of cell lines and identify compounds that might elicit selective cytotoxicity.</p> <p>Methods</p> <p>We screened the NCI60 panel in search of cell lines that express low levels of MRN proteins, or that fail to arrest in S-phase in response to the topisomerase I inhibitor SN38. The NCI COMPARE program was used to discover compounds that preferentially target cells with these phenotypes.</p> <p>Results</p> <p>HCT116 cells were initially identified as defective in MRN and S phase arrest. Transfection with Mre11 also elevated Rad50 and Nbs1, and rescued the defective S-phase arrest. Cells of the NCI60 panel exhibited a large range of protein expression but a strong correlation existed between Mre11, Rad50 and Nbs1 consistent with complex formation determining protein stability. Mre11 mRNA correlated best with protein level suggesting it was the primary determinant of the overall level of the complex. Three other cell lines failed to arrest in response to SN38, two of which also had low MRN. However, other cell lines with low MRN still arrested suggesting low MRN does not predict an inability to arrest. Many compounds, including a family of benzothiazoles, correlated with the failure to arrest in S phase. The activity of benzothiazoles has been attributed to metabolic activation and DNA alkylation, but we note several cell lines in which sensitivity does not correlate with metabolism. We propose that the checkpoint defect imposes an additional mechanism of sensitivity on cells.</p> <p>Conclusions</p> <p>We have identified cells with possible defects in the MRN complex and S phase arrest, and a series of compounds that may preferentially target S phase-defective cells. We discuss limitations of the COMPARE program when attempting to identify compounds that selectively inhibit only a few cell lines.</p

    MyosinVIIa Interacts with Twinfilin-2 at the Tips of Mechanosensory Stereocilia in the Inner Ear

    Get PDF
    In vertebrates hearing is dependent upon the microvilli-like mechanosensory stereocilia and their length gradation. The staircase-like organization of the stereocilia bundle is dynamically maintained by variable actin turnover rates. Two unconventional myosins were previously implicated in stereocilia length regulation but the mechanisms of their action remain unknown. MyosinXVa is expressed in stereocilia tips at levels proportional to stereocilia length and its absence produces staircase-like bundles of very short stereocilia. MyosinVIIa localizes to the tips of the shorter stereocilia within bundles, and when absent, the stereocilia are abnormally long. We show here that myosinVIIa interacts with twinfilin-2, an actin binding protein, which inhibits actin polymerization at the barbed end of the filament, and that twinfilin localization in stereocilia overlaps with myosinVIIa. Exogenous expression of myosinVIIa in fibroblasts results in a reduced number of filopodia and promotes accumulation of twinfilin-2 at the filopodia tips. We hypothesize that the newly described interaction between myosinVIIa and twinfilin-2 is responsible for the establishment and maintenance of slower rates of actin turnover in shorter stereocilia, and that interplay between complexes of myosinVIIa/twinfilin-2 and myosinXVa/whirlin is responsible for stereocilia length gradation within the bundle staircase

    Ki-67: level of evidence and methodological considerations for its role in the clinical management of breast cancer: analytical and critical review

    Full text link
    • …
    corecore