115 research outputs found
Privacy-Preserving Deep Learning With Homomorphic Encryption: An Introduction
Privacy-preserving deep learning with homomorphic encryption (HE) is a novel and promising research area aimed at designing deep learning solutions that operate while guaranteeing the privacy of user data. Designing privacy-preserving deep learning solutions requires one to completely rethink and redesign deep learning models and algorithms to match the severe technological and algorithmic constraints of HE. This paper provides an introduction to this complex research area as well as a methodology for designing privacy-preserving convolutional neural networks (CNNs). This methodology was applied to the design of a privacy-preserving version of the well-known LeNet-1 CNN, which was successfully operated on two benchmark datasets for image classification. Furthermore, this paper details and comments on the research challenges and software resources available for privacy-preserving deep learning with HE
Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism
The mammalian target of rapamycin complex 1 (mTORC1) is a central node in a network of signaling pathways controlling cell growth and survival. This multiprotein complex integrates external signals and affects different nutrient pathways in various organs. However, it is not clear how alterations of mTORC1 signaling in skeletal muscle affect whole-body metabolism.; We characterized the metabolic phenotype of young and old raptor muscle knock-out (RAmKO) and TSC1 muscle knock-out (TSCmKO) mice, where mTORC1 activity in skeletal muscle is inhibited or constitutively activated, respectively. Ten-week-old RAmKO mice are lean and insulin resistant with increased energy expenditure, and they are resistant to a high-fat diet (HFD). This correlates with an increased expression of histone deacetylases (HDACs) and a downregulation of genes involved in glucose and fatty acid metabolism. Ten-week-old TSCmKO mice are also lean, glucose intolerant with a decreased activation of protein kinase B (Akt/PKB) targets that regulate glucose transporters in the muscle. The mice are resistant to a HFD and show reduced accumulation of glycogen and lipids in the liver. Both mouse models suffer from a myopathy with age, with reduced fat and lean mass, and both RAmKO and TSCmKO mice develop insulin resistance and increased intramyocellular lipid content.; Our study shows that alterations of mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. While both inhibition and constitutive activation of mTORC1 induce leanness and resistance to obesity, changes in the metabolism of muscle and peripheral organs are distinct. These results indicate that a balanced mTORC1 signaling in the muscle is required for proper metabolic homeostasis
Survival and Recurrence of Endocarditis following Mechanical vs. Biological Aortic Valve Replacement for Endocarditis in Patients Aged 40 to 65 Years: Data from the INFECT-Registry
Background: Infective endocarditis (IE) is a serious disease, and in many cases, surgery is necessary. Whether the type of prosthesis implanted for aortic valve replacement (AVR) for IE impacts patient survival is a matter of debate. The aim of the present study is to quantify differences in long-term survival and recurrence of endocarditis AVR for IE according to prosthesis type among patients aged 40 to 65 years. Methods: This was an analysis of the INFECT-REGISTRY. Trends in proportion to the use of mechanical prostheses versus biological ones over time were tested by applying the sieve bootstrapped t-test. Confounders were adjusted using the optimal full-matching propensity score. The difference in overall survival was compared using the Cox model, whereas the differences in recurrence of endocarditis were evaluated using the Gray test. Results: Overall, 4365 patients were diagnosed and operated on for IE from 2000 to 2021. Of these, 549, aged between 40 and 65 years, underwent AVR. A total of 268 (48.8%) received mechanical prostheses, and 281 (51.2%) received biological ones. A significant trend in the reduction of implantation of mechanical vs. biological prostheses was observed during the study period (p < 0.0001). Long-term survival was significantly higher among patients receiving a mechanical prosthesis than those receiving a biological prosthesis (hazard ratio [HR] 0.546, 95% CI: 0.322–0.926, p = 0.025). Mechanical prostheses were associated with significantly less recurrent endocarditis after AVR than biological prostheses (HR 0.268, 95%CI: 0.077–0.933, p = 0.039). Conclusions: The present analysis of the INFECT-REGISTRY shows increased survival and reduced recurrence of endocarditis after a mechanical aortic valve prosthesis implant for IE in middle-aged patients
Extracorporeal life support in mitral papillary muscle rupture: Outcome of multicenter study
Background: Post-acute myocardial infarction papillary muscle rupture (post-AMI PMR) may present variable clinical scenarios and degree of emergency due to result of cardiogenic shock. Veno-arterial extracorporeal life support (V-A ECLS) has been proposed to improve extremely poor pre- or postoperative conditions. Information in this respect is scarce.Methods: From the CAUTION (meChanical complicAtion of acUte myocardial infarcTion: an InternatiOnal multiceNter cohort study) database (16 different Centers, data from 2001 to 2018), we extracted adult patients who were surgically treated for post-AMI PMR and underwent pre- or/and postoperative V-A ECLS support. The end-points of this study were in-hospital survival and ECLS complications.Results: From a total of 214 post-AMI PMR patients submitted to surgery, V-A ECLS was instituted in 23 (11%) patients. The median age was 61.7 years (range 46-81 years). Preoperatively, ECLS was commenced in 10 patients (43.5%), whereas intra/postoperative in the remaining 13. The most common V-A ECLS indication was post-cardiotomy shock, followed by preoperative cardiogenic shock and cardiac arrest. The median duration of V-A ECLS was 4 days. V-A ECLS complications occurred in more than half of the patients. Overall, in-hospital mortality was 39.2% (9/23), compared to 22% (42/219) for the non-ECLS group.Conclusions: In post-AMI PMR patients, V-A ECLS was used in almost 10% of the patients either to promote bridge to surgery or as postoperative support. Further investigations are required to better evaluate a potential for increased use and its effects of V-A ECLS in such a context based on the still high perioperative mortality
mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4
Loss of innervation of skeletal muscle is a determinant event in several muscle diseases. Although several effectors have been identified, the pathways controlling the integrated muscle response to denervation remain largely unknown. Here, we demonstrate that PKB/Akt and mTORC1 play important roles in regulating muscle homeostasis and maintaining neuromuscular endplates after nerve injury. To allow dynamic changes in autophagy, mTORC1 activation must be tightly balanced following denervation. Acutely activating or inhibiting mTORC1 impairs autophagy regulation and alters homeostasis in denervated muscle. Importantly, PKB/Akt inhibition, conferred by sustained mTORC1 activation, abrogates denervation-induced synaptic remodeling and causes neuromuscular endplate degeneration. We establish that PKB/Akt activation promotes the nuclear import of HDAC4 and is thereby required for epigenetic changes and synaptic gene up-regulation upon denervation. Hence, our study unveils yet-unknown functions of PKB/Akt-mTORC1 signaling in the muscle response to nerve injury, with important implications for neuromuscular integrity in various pathological conditions
- …