1 research outputs found

    Sex and the single embryo: early deveopment in the Mediterranean fruit fly, Ceratitis capitata

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In embryos the maternal-to-zygotic transition (MTZ) integrates post-transcriptional regulation of maternal transcripts with transcriptional activation of the zygotic genome. Although the molecular mechanisms underlying this event are being clarified in <it>Drosophila melanogaster</it>, little is know about the embryogenic processes in other insect species. The recent publication of expressed sequence tags (ESTs) from embryos of the global pest species <it>Ceratitis capitata </it>(medfly) has enabled the investigation of embryogenesis in this species and has allowed a comparison of the embryogenic processes in these two related dipteran species, <it>C. capitata </it>and <it>D. melanogaster</it>, that shared a common ancestor 80-100 mya.</p> <p>Results</p> <p>Using a novel PCR-based sexing method, which takes advantage of a putative LTR retrotransposon MITE insertion on the medfly Y chromosome, the transcriptomes of individual early male and female embryos were analysed using RT-PCR. This study is focused on two crucial aspects of the onset of embryonic development: sex determination and cellular blastoderm formation. Together with the three known medfly genes (<it>Cctransformer</it>, <it>Cctransformer2 </it>and <it>Ccdoublesex</it>), the expression patterns of other medfly genes that are similar to the <it>D. melanogaster </it>sex-determination genes (<it>sisterlessA, groucho, deadpan, Sex-lethal, female lethal d, sans fille </it>and <it>intersex</it>) and four cellular blastoderm formation genes (<it>Rho1, spaghetti squash, slow-as-molasses </it>and <it>serendipity-α</it>) were analyzed, allowing us to sketch a preliminary outline of the embryonic process in the medfly. Furthermore, a putative homologue of the <it>Zelda </it>gene has been considered, which in <it>D. melanogaster </it>encodes a DNA-binding factor responsible for the maternal-to-zygotic transition.</p> <p>Conclusions</p> <p>Our novel sexing method facilitates the study of i) when the MTZ transition occurs in males and females of <it>C. capitata</it>, ii) when and how the maternal information of "female-development" is reprogrammed in the embryos and iii) similarities and differences in the regulation of gene expression in <it>C. capitata </it>and <it>D. melanogaster</it>. We suggest a new model for the onset of the sex determination cascade in the medfly: the maternally inherited <it>Cctra </it>transcripts in the female embryos are insufficient to produce enough active protein to inhibit the male mode of <it>Cctra </it>splicing. The slow rate of development and the inefficiency of the splicing mechanism in the pre-cellular blastoderm facilitates the male-determining factor (M) activity, which probably acts by inhibiting CcTRA protein activity.</p
    corecore