2 research outputs found

    Association between Staphylococcus aureus nasal carriage and disease phenotype in patients affected by systemic lupus erythematosus

    Get PDF
    Staphylococcus aureus (SA) is a commensal bacterium representing one of the most important components of the skin microbiome, mostly isolated in the anterior nares. A higher rate of SA nasal colonization in patients affected by Wegener's granulomatosis and rheumatoid arthritis compared with healthy subjects (HS) has been described. No studies focusing on systemic lupus erythematosus (SLE) are available. We aimed at analyzing the prevalence of SA nasal carriers in an SLE cohort and evaluating correlation between nasal colonization and clinical, laboratory and therapeutic features. METHODS: We enrolled 84 patients with SLE (number of male/female patients 6/78; mean age 41.3 ± 12.2 years, mean disease duration 142.1 ± 103.8 months) and 154 HS blood donors. Patients with SLE underwent a physical examination and the clinical/laboratory data were collected. All the patients with SLE and the HS received a nasal swab for SA isolation and identification. RESULTS: SA nasal colonization prevalence was 21.4 % in patients with SLE and 28.6 % in HS (P not significant). We analyzed patients with SLE according to the presence (n = 18, SA-positive SLE) or the absence (n = 66, SA-negative SLE) of nasal colonization. Renal involvement was significantly more frequent in SA-positive SLE (11.6 % vs 3.0 %; P = 0.0009). Moreover, the presence of anti-dsDNA, anti-Sm, anti-SSA, anti-SSB, anti-RNP antibodies was significantly higher in SA-positive SLE (P < 0.0001, P = 0.01, P = 0.008, P = 0.03, P = 0.03, respectively). CONCLUSION: SA colonization is a relatively frequent condition in patients with SLE, with a frequency similar to HS. The presence of SA seems associated with a peculiar SLE phenotype characterized by renal manifestations and autoantibody positivity, confirming the role of the microbiome in disease phenotype

    Blood component fractionation: Manual versus automatic procedures

    No full text
    Over the last few years, quality system requirements have been introduced for blood components. The necessary compliance with standard productions will have a considerable impact on Blood Banks. The introduction of automated methods is the most satisfactory means to meet these requirements for blood component preparation. A new device has been developed to automate the fractionation of blood into components. We evaluated the efficacy of this instrument as compared to manual methods. A total of 218 units of blood have been collected, into several different commercial blood bag systems (77 into standard quadruple bag systems, 141 into bag systems with integrated in line filters), and used to evaluate the universality of the instrument. Whole blood units were processed using the Top/Top system and the Compomat G4 (Fresenius HemoCare). A separate program protocol was developed for each kind of bag. Use of the Compomat G4 resulted in a statistically significant (p<0.001) increase of the hemoglobin in filtered red cell concentrates (RCC) in comparison with the manual procedure, and a similar trend, even not statistically significant, has been observed for filtered RCC. Regardless of bag systems, we were able to observe a statistically significant increase of platelets in the platelet concentrates (PCs), when comparing automatic versus manual procedure. The automated procedure has been shown to be fast, and easy for the operators. This device reliably produces acceptable blood components, and has been shown adaptable to use with different blood bag systems. © 2003 Elsevier Ltd. All rights reserved
    corecore