58 research outputs found

    A Gene for Universal Congenital Alopecia Maps to Chromosome 8p21-22

    Get PDF
    SummaryComplete or partial congenital absence of hair (congenital alopecia) may occur either in isolation or with associated defects. The majority of families with isolated congenital alopecia has been reported to follow an autosomal-recessive mode of inheritance (MIM 203655). As yet, no gene has been linked to isolated congenital alopecia, nor has linkage been established to a specific region of the genome. In an attempt to map the gene for the autosomal recessive form of the disorder, we have performed genetic linkage analysis on a large inbred Pakistani family in which affected persons show complete absence of hair development (universal congenital alopecia). We have analyzed individuals of this family, using >175 microsatellite polymorphic markers of the human genome. A maximum LOD score of 7.90 at a recombination fraction of 0 has been obtained with locus D8S258. Haplotype analysis of recombination events localized the disease to a 15-cM region between marker loci D8S261 and D8S1771. We have thus mapped the gene for this hereditary form of isolated congenital alopecia to a locus on chromosome 8p21-22 (ALUNC [alopecia universalis congenitalis]). This will aid future identification of the responsible gene, which will be extremely useful for the understanding of the biochemistry of hair development

    Vitamin D Receptor FokI, ApaI, and TaqI Polymorphisms in Lead Exposed Subjects From Saudi Arabia

    Get PDF
    Vitamin D receptor (VDR) gene polymorphisms were reported to influence blood lead levels (BLL) and the response of subjects to the symptoms of lead toxicity. However, no studies have been conducted in the Saudi Arabian population which has unique ethnicity and socio-demographic features. This study examined the polymorphisms in exon 2 (allele 1) and intron 8 (allele 2 and allele 3) of VDR gene and their relation to BLLs. As per the CDC guidelines, the recruited lead-exposed workers (N = 130) were categorized to two groups viz., low BLL group (<10 Ī¼g/dL) and high BLL group (>10 Ī¼g/dL). The low BLL group had a mean BLL of 4.37 Ī¼g/dL, while the high BLL group had levels of 18.12 Ī¼g/dL (p < 0.001). Overall, the genetic variants, TC and CC in the VDR FokI were significantly associated with a risk of lead toxicity and the allele ā€œCā€ was a risk factor (p = 0.00026). Furthermore, the TT genotype of VDR ApaI significantly increased the risk of developing lead poisoning (p = 0.0006). The VDR TaqI SNP was not significantly associated with lead toxicity. The highest BLLs for VDR FokI-CC, VDR ApaI-GG, and VDR TaqI-TT genotypes from High BLL group were 18.42, 15.26, and 18.75 Ī¼g/dL, respectively. Older age (51ā€“60 years) was found to be a significant confounding factor for BLLs (p = 0.012). Additional studies in larger sample sizes are needed to firmly establish the role of VDR genotypes and genetic susceptibility to lead poisoning

    A novel insertion mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene underlies Grebe-type chondrodysplasia in a consanguineous Pakistani family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Grebe-type chondrodysplasia (GCD) is a rare autosomal recessive syndrome characterized by severe acromesomelic limb shortness with non-functional knob like fingers resembling toes. Mutations in the cartilage-derived morphogenetic protein 1 (<it>CDMP1</it>) gene cause Grebe-type chondrodysplasia.</p> <p>Methods</p> <p>Genotyping of six members of a Pakistani family with Grebe-type chondrodysplasia, including two affected and four unaffected individuals, was carried out by using polymorphic microsatellite markers, which are closely linked to <it>CDMP1 </it>locus on chromosome 20q11.22. To screen for a mutation in <it>CDMP1 </it>gene, all of its coding exons and splice junction sites were PCR amplified from genomic DNA of affected and unaffected individuals of the family and sequenced directly in an ABI Prism 310 automated DNA sequencer.</p> <p>Results</p> <p>Genotyping results showed linkage of the family to <it>CDMP1 </it>locus. Sequence analysis of the <it>CDMP1 </it>gene identified a novel four bases insertion mutation (1114insGAGT) in exon 2 of the gene causing frameshift and premature termination of the polypeptide.</p> <p>Conclusion</p> <p>We describe a 4 bp novel insertion mutation in <it>CDMP1 </it>gene in a Pakistani family with Grebe-type chondrodysplasia. Our findings extend the body of evidence that supports the importance of <it>CDMP1 </it>in the development of limbs.</p

    Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid.

    Get PDF
    Hyperglycaemia as a result of diabetes mellitus or acute illness is associated with increased susceptibility to respiratory infection with Staphylococcus aureus. Hyperglycaemia increases the concentration of glucose in airway surface liquid (ASL) and promotes the growth of S. aureus in vitro and in vivo. Whether elevation of other sugars in the blood, such as fructose, also results in increased concentrations in ASL is unknown and whether sugars in ASL are directly utilised by S. aureus for growth has not been investigated. We obtained mutant S. aureus JE2 strains with transposon disrupted sugar transport genes. NE768(fruA) exhibited restricted growth in 10Ā mM fructose. In H441 airway epithelial-bacterial co-culture, elevation of basolateral sugar concentration (5-20Ā mM) increased the apical growth of JE2. However, sugar-induced growth of NE768(fruA) was significantly less when basolateral fructose rather than glucose was elevated. This is the first experimental evidence to show that S. aureus directly utilises sugars present in the ASL for growth. Interestingly, JE2 growth was promoted less by glucose than fructose. Net transepithelial flux of D-glucose was lower than D-fructose. However, uptake of D-glucose was higher than D-fructose across both apical and basolateral membranes consistent with the presence of GLUT1/10 in the airway epithelium. Therefore, we propose that the preferential uptake of glucose (compared to fructose) limits its accumulation in ASL. Pre-treatment with metformin increased transepithelial resistance and reduced the sugar-dependent growth of S. aureus. Thus, epithelial paracellular permeability and glucose transport mechanisms are vital to maintain low glucose concentration in ASL and limit bacterial nutrient sources as a defence against infection

    Brachydactyly

    Get PDF
    Brachydactyly ("short digits") is a general term that refers to disproportionately short fingers and toes, and forms part of the group of limb malformations characterized by bone dysostosis. The various types of isolated brachydactyly are rare, except for types A3 and D. Brachydactyly can occur either as an isolated malformation or as a part of a complex malformation syndrome. To date, many different forms of brachydactyly have been identified. Some forms also result in short stature. In isolated brachydactyly, subtle changes elsewhere may be present. Brachydactyly may also be accompanied by other hand malformations, such as syndactyly, polydactyly, reduction defects, or symphalangism

    The Epidemiology, Genetics and Future Management of Syndactyly

    Get PDF
    Syndactyly is a condition well documented in current literature due to it being the most common congenital hand defect, with a large aesthetic and functional significance

    Controlling Destiny through Chemistry: Small-Molecule Regulators of Cell Fate

    Get PDF

    Linkage mapping of a new syndromic form of X-linked mental retardation, MRXS7, associated with obesity.

    No full text
    • ā€¦
    corecore