2,312 research outputs found

    Canonical Phase Space Formulation of Quasilocal General Relativity

    Get PDF
    We construct a Hamiltonian formulation of quasilocal general relativity using an extended phase space that includes boundary coordinates as configuration variables. This allows us to use Hamiltonian methods to derive an expression for the energy of a non-isolated region of space-time that interacts with its neighbourhood. This expression is found to be very similar to the Brown-York quasilocal energy that was originally derived by Hamilton-Jacobi methods. We examine the connection between the two formalisms and find that when the boundary conditions for the two are harmonized, the resulting quasilocal energies are identical.Comment: 31 pages, 2 figures, references added, typos corrected, section 3 revised for clarity, to appear in Classical and Quantum Gravit

    The first law for slowly evolving horizons

    Get PDF
    We study the mechanics of Hayward's trapping horizons, taking isolated horizons as equilibrium states. Zeroth and second laws of dynamic horizon mechanics come from the isolated and trapping horizon formalisms respectively. We derive a dynamical first law by introducing a new perturbative formulation for dynamic horizons in which "slowly evolving" trapping horizons may be viewed as perturbatively non-isolated.Comment: 4 pages, typos fixed, minor changes in wording for clarity, to appear in PR

    Searching for binary coalescences with inspiral templates: Detection and parameter estimation

    Get PDF
    There has been remarkable progress in numerical relativity recently. This has led to the generation of gravitational waveform signals covering what has been traditionally termed the three phases of the coalescence of a compact binary - the inspiral, merger and ringdown. In this paper, we examine the usefulness of inspiral only templates for both detection and parameter estimation of the full coalescence waveforms generated by numerical relativity simulations. To this end, we deploy as search templates waveforms based on the effective one-body waveforms terminated at the light-ring as well as standard post-Newtonian waveforms. We find that both of these are good for detection of signals. Parameter estimation is good at low masses, but degrades as the mass of the binary system increases.Comment: 14 pages, submitted to proceedings of the NRDA08 meeting, Syracuse, Aug. 11-14, 200

    A fully-coherent all-sky search for gravitational-waves from compact binary coalescences

    Get PDF
    We introduce a fully-coherent method for searching for gravitational wave signals generated by the merger of black hole and/or neutron star binaries. This extends the coherent analysis previously developed and used for targeted gravitational wave searches to an all-sky, all-time search. We apply the search to one month of data taken during the fifth science run of the LIGO detectors. We demonstrate an increase in sensitivity of 25% over the coincidence search, which is commensurate with expectations. Finally, we discuss prospects for implementing and running a coherent search for gravitational wave signals from binary coalescence in the advanced gravitational wave detector data.Comment: 17 pages, 12 figure

    Improved source localization with LIGO India

    Full text link
    A global network of advanced gravitational wave interferometric detectors is under construction. These detectors will offer an order of magnitude improvement in sensitivity over the initial detectors and will usher in the era of gravitational wave astronomy. In this paper, we evaluate the benefits of relocating one of the advanced LIGO detectors to India.Comment: 7 pages, 3 figures, accepted for publication in proceedings of ICGC2011 conference. Localization figures update

    Isolated, slowly evolving, and dynamical trapping horizons: geometry and mechanics from surface deformations

    Get PDF
    We study the geometry and dynamics of both isolated and dynamical trapping horizons by considering the allowed variations of their foliating two-surfaces. This provides a common framework that may be used to consider both their possible evolutions and their deformations as well as derive the well-known flux laws. Using this framework, we unify much of what is already known about these objects as well as derive some new results. In particular we characterize and study the "almost-isolated" trapping horizons known as slowly evolving horizons. It is for these horizons that a dynamical first law holds and this is analogous and closely related to the Hawking-Hartle formula for event horizons.Comment: 39 pages, 6 figures, version to appear in PRD : a few minor changes and many typos corrected in equation

    Distorted charged dilaton black holes

    Full text link
    We construct exact static, axisymmetric solutions of Einstein-Maxwell-dilaton gravity presenting distorted charged dilaton black holes. The thermodynamics of such distorted black holes is also discussed.Comment: 14 pages, latex; v2 typos corrected, references adde

    Comparison of Gravitational Wave Detector Network Sky Localization Approximations

    Full text link
    Gravitational waves emitted during compact binary coalescences are a promising source for gravitational-wave detector networks. The accuracy with which the location of the source on the sky can be inferred from gravitational wave data is a limiting factor for several potential scientific goals of gravitational-wave astronomy, including multi-messenger observations. Various methods have been used to estimate the ability of a proposed network to localize sources. Here we compare two techniques for predicting the uncertainty of sky localization -- timing triangulation and the Fisher information matrix approximations -- with Bayesian inference on the full, coherent data set. We find that timing triangulation alone tends to over-estimate the uncertainty in sky localization by a median factor of 44 for a set of signals from non-spinning compact object binaries ranging up to a total mass of 20M20 M_\odot, and the over-estimation increases with the mass of the system. We find that average predictions can be brought to better agreement by the inclusion of phase consistency information in timing-triangulation techniques. However, even after corrections, these techniques can yield significantly different results to the full analysis on specific mock signals. Thus, while the approximate techniques may be useful in providing rapid, large scale estimates of network localization capability, the fully coherent Bayesian analysis gives more robust results for individual signals, particularly in the presence of detector noise.Comment: 11 pages, 7 Figure

    Imaging internal flows in a drying sessile polymer dispersion drop using Spectral Radar Optical Coherence Tomography (SR-OCT)

    Get PDF
    In this work, we present the visualization of the internal flows in a drying sessile polymer dispersion drop on hydrophilic and hydrophobic surfaces with Spectral Radar Optical Coherence Tomography (SR-OCT).We have found that surface features such as the initial contact angle and pinning of the contact line, play a crucial role on the flow direction and final shape of the dried drop. Moreover, imaging through selection of vertical slices using optical coherence tomography offers a feasible alternative compared to imaging through selection of narrow horizontal slices using confocal microscopy for turbid, barely transparent fluids

    Improved methods for detecting gravitational waves associated with short gamma-ray bursts

    Get PDF
    In the era of second generation ground-based gravitational wave detectors, short gamma-ray bursts (GRBs) will be among the most promising astrophysical events for joint electromagnetic and gravitational wave observation. A targeted search for gravitational wave compact binary merger signals in coincidence with short GRBs was developed and used to analyze data from the first generation LIGO and Virgo instruments. In this paper, we present improvements to this search that enhance our ability to detect gravitational wave counterparts to short GRBs. Specifically, we introduce an improved method for estimating the gravitational wave background to obtain the event significance required to make detections; implement a method of tiling extended sky regions, as required when searching for signals associated to poorly localized GRBs from Fermi Gamma-ray Burst Monitor or the InterPlanetary Network; and incorporate astrophysical knowledge about the beaming of GRB emission to restrict the search parameter space. We describe the implementation of these enhancements and demonstrate how they improve the ability to observe binary merger gravitational wave signals associated with short GRBs.Comment: 13 pages, 6 figure
    corecore