1,515 research outputs found
Polymer state approximations of Schroedinger wave functions
It is shown how states of a quantum mechanical particle in the Schroedinger
representation can be approximated by states in the so-called polymer
representation. The result may shed some light on the semiclassical limit of
loop quantum gravity.Comment: 11 pages, 1 figure, Conclusions section adde
Networks of gravitational wave detectors and three figures of merit
This paper develops a general framework for studying the effectiveness of
networks of interferometric gravitational wave detectors and then uses it to
show that enlarging the existing LIGO-VIRGO network with one or more planned or
proposed detectors in Japan (LCGT), Australia, and India brings major benefits,
including much larger detection rate increases than previously thought... I
show that there is a universal probability distribution function (pdf) for
detected SNR values, which implies that the most likely SNR value of the first
detected event will be 1.26 times the search threshold. For binary systems, I
also derive the universal pdf for detected values of the orbital inclination,
taking into account the Malmquist bias; this implies that the number of
gamma-ray bursts associated with detected binary coalescences should be 3.4
times larger than expected from just the beaming fraction of the gamma burst.
Using network antenna patterns, I propose three figures of merit that
characterize the relative performance of different networks... Adding {\em any}
new site to the planned LIGO-VIRGO network can dramatically increase, by
factors of 2 to 4, the detected event rate by allowing coherent data analysis
to reduce the spurious instrumental coincident background. Moving one of the
LIGO detectors to Australia additionally improves direction-finding by a factor
of 4 or more. Adding LCGT to the original LIGO-VIRGO network not only improves
direction-finding but will further increase the detection rate over the
extra-site gain by factors of almost 2, partly by improving the network duty
cycle... Enlarged advanced networks could look forward to detecting three to
four hundred neutron star binary coalescences per year.Comment: 38 pages, 7 figures, 2 tables. Accepted for publication in Classical
and Quantum Gravit
Horizon energy and angular momentum from a Hamiltonian perspective
Classical black holes and event horizons are highly non-local objects,
defined in terms of the causal past of future null infinity. Alternative,
(quasi)local definitions are often used in mathematical, quantum, and numerical
relativity. These include apparent, trapping, isolated, and dynamical horizons,
all of which are closely associated to two-surfaces of zero outward null
expansion. In this paper we show that three-surfaces which can be foliated with
such two-surfaces are suitable boundaries in both a quasilocal action and a
phase space formulation of general relativity. The resulting formalism provides
expressions for the quasilocal energy and angular momentum associated with the
horizon. The values of the energy and angular momentum are in agreement with
those derived from the isolated and dynamical horizon frameworks.Comment: 39 pages, 3 figures, Final Version : content essentially unchanged
but many small improvements made in response to referees, a few references
adde
Prospects for joint radio telescope and gravitational wave searches for astrophysical transients
The radio skies remain mostly unobserved when it comes to transient
phenomena. The direct detection of gravitational waves will mark a major
milestone of modern astronomy, as an entirely new window will open on the
universe. Two apparently independent phenomena can be brought together in a
coincident effort that has the potential to boost both searches. In this paper
we will outline the scientific case that stands behind these future joint
observations and will describe the methods that might be used to conduct the
searches and analyze the data. The targeted sources are binary systems of
compact objects, known to be strong candidate sources for gravitational waves.
Detection of transients coincident in these two channels would be a significant
smoking gun for first direct detection of gravitational waves, and would open
up a new field for characterization of astrophysical transients involving
massive compact objects.Comment: 12 pages, Amaldi 8 Conference (New York, 2009) proceedings pape
A List of Galaxies for Gravitational Wave Searches
We present a list of galaxies within 100 Mpc, which we call the Gravitational
Wave Galaxy Catalogue (GWGC), that is currently being used in follow-up
searches of electromagnetic counterparts from gravitational wave searches. Due
to the time constraints of rapid follow-up, a locally available catalogue of
reduced, homogenized data is required. To achieve this we used four existing
catalogues: an updated version of the Tully Nearby Galaxy Catalog, the Catalog
of Neighboring Galaxies, the V8k catalogue and HyperLEDA. The GWGC contains
information on sky position, distance, blue magnitude, major and minor
diameters, position angle, and galaxy type for 53,255 galaxies. Errors on these
quantities are either taken directly from the literature or estimated based on
our understanding of the uncertainties associated with the measurement method.
By using the PGC numbering system developed for HyperLEDA, the catalogue has a
reduced level of degeneracies compared to catalogues with a similar purpose and
is easily updated. We also include 150 Milky Way globular clusters. Finally, we
compare the GWGC to previously used catalogues, and find the GWGC to be more
complete within 100 Mpc due to our use of more up-to-date input catalogues and
the fact that we have not made a blue luminosity cut.Comment: Accepted for publication in Classical and Quantum Gravity, 13 pages,
7 figure
Supersymmetric isolated horizons
We construct a covariant phase space for rotating weakly isolated horizons in
Einstein-Maxwell-Chern-Simons theory in all (odd) dimensions. In
particular, we show that horizons on the corresponding phase space satisfy the
zeroth and first laws of black-hole mechanics. We show that the existence of a
Killing spinor on an isolated horizon in four dimensions (when the Chern-Simons
term is dropped) and in five dimensions requires that the induced (normal)
connection on the horizon has to vanish, and this in turn implies that the
surface gravity and rotation one-form are zero. This means that the
gravitational component of the horizon angular momentum is zero, while the
electromagnetic component (which is attributed to the bulk radiation field) is
unconstrained. It follows that an isolated horizon is supersymmetric only if it
is extremal and nonrotating. A remarkable property of these horizons is that
the Killing spinor only has to exist on the horizon itself. It does not have to
exist off the horizon. In addition, we find that the limit when the surface
gravity of the horizon goes to zero provides a topological constraint.
Specifically, the integral of the scalar curvature of the cross sections of the
horizon has to be positive when the dominant energy condition is satisfied and
the cosmological constant is zero or positive, and in particular
rules out the torus topology for supersymmetric isolated horizons (unless
) if and only if the stress-energy tensor is of the form
such that for any two null vectors and with
normalization on the horizon.Comment: 26 pages, 1 figure; v2: typos corrected, topology arguments
corrected, discussion of black rings and dipole charge added, references
added, version to appear in Classical and Quantum Gravit
Edge-control and surface-smoothness in sub-aperture polishing of mirror segments
This paper addresses two challenges in establishing a new process chain for polishing hexagonal segments for extremely large telescopes:- i) control of edge and corner profiles in small-tool polishing of hexagons, and ii) achieving the required smoothness of the bulk aspheric form. We briefly describe the performance of a CNC-grinding process used to create the off-axis asphere, which established the input-quality for subsequent processing. We then summarize processes for smoothing ground mid-spatials and pre- and corrective polishing using Zeeko CNC machines. The impact of two cases is considered; i) all processing stages are performed after the segment is cut hexagonal, and ii) final rectification of a hexagon after cutting from an aspherised roundel, as an alternative to ionfiguring. We then report on experimental results on witness samples demonstrating edges and corners close to the EELT segment specification, and results on a full-aperture spherical segment showing excellent surface smoothness. © 2012 SPIE
Predicting phase equilibria in polydisperse systems
Many materials containing colloids or polymers are polydisperse: They
comprise particles with properties (such as particle diameter, charge, or
polymer chain length) that depend continuously on one or several parameters.
This review focusses on the theoretical prediction of phase equilibria in
polydisperse systems; the presence of an effectively infinite number of
distinguishable particle species makes this a highly nontrivial task. I first
describe qualitatively some of the novel features of polydisperse phase
behaviour, and outline a theoretical framework within which they can be
explored. Current techniques for predicting polydisperse phase equilibria are
then reviewed. I also discuss applications to some simple model systems
including homopolymers and random copolymers, spherical colloids and
colloid-polymer mixtures, and liquid crystals formed from rod- and plate-like
colloidal particles; the results surveyed give an idea of the rich
phenomenology of polydisperse phase behaviour. Extensions to the study of
polydispersity effects on interfacial behaviour and phase separation kinetics
are outlined briefly.Comment: 48 pages, invited topical review for Journal of Physics: Condensed
Matter; uses Institute of Physics style file iopart.cls (included
- …