1,865 research outputs found
Extended matter coupled to BF theory
Recently, a topological field theory of membrane-matter coupled to BF theory
in arbitrary spacetime dimensions was proposed [1]. In this paper, we discuss
various aspects of the four-dimensional theory. Firstly, we study classical
solutions leading to an interpretation of the theory in terms of strings
propagating on a flat spacetime. We also show that the general classical
solutions of the theory are in one-to-one correspondence with solutions of
Einstein's equations in the presence of distributional matter (cosmic strings).
Secondly, we quantize the theory and present, in particular, a prescription to
regularize the physical inner product of the canonical theory. We show how the
resulting transition amplitudes are dual to evaluations of Feynman diagrams
coupled to three-dimensional quantum gravity. Finally, we remove the regulator
by proving the topological invariance of the transition amplitudes.Comment: 27 pages, 7 figure
Observables in 3d spinfoam quantum gravity with fermions
We study expectation values of observables in three-dimensional spinfoam
quantum gravity coupled to Dirac fermions. We revisit the model introduced by
one of the authors and extend it to the case of massless fermionic fields. We
introduce observables, analyse their symmetries and the corresponding proper
gauge fixing. The Berezin integral over the fermionic fields is performed and
the fermionic observables are expanded in open paths and closed loops
associated to pure quantum gravity observables. We obtain the vertex amplitudes
for gauge-invariant observables, while the expectation values of gauge-variant
observables, such as the fermion propagator, are given by the evaluation of
particular spin networks.Comment: 32 pages, many diagrams, uses psfrag
Relaxing Cosmological Constraints on Large Extra Dimensions
We reconsider cosmological constraints on extra dimension theories from the
excess production of Kaluza-Klein gravitons. We point out that, if the normalcy
temperature is above 1 GeV, then graviton states produced at this temperature
will decay early enough that they do not affect the present day dark matter
density, or the diffuse gamma ray background. We rederive the relevant
cosmological constraints for this scenario.Comment: 17 pages, latex, revtex4; added a short discussion of other
constraints, reference
Dark Matter Capture in the First Stars: a Power Source and Limit on Stellar Mass
The annihilation of weakly interacting massive particles can provide an
important heat source for the first (Pop. III) stars, potentially leading to a
new phase of stellar evolution known as a "Dark Star". When dark matter (DM)
capture via scattering off of baryons is included, the luminosity from DM
annihilation may dominate over the luminosity due to fusion, depending on the
DM density and scattering cross-section. The influx of DM due to capture may
thus prolong the lifetime of the Dark Stars. Comparison of DM luminosity with
the Eddington luminosity for the star may constrain the stellar mass of zero
metallicity stars; in this case DM will uniquely determine the mass of the
first stars. Alternatively, if sufficiently massive Pop. III stars are found,
they might be used to bound dark matter properties.Comment: 19 pages, 4 figures, 3 Tables updated captions and graphs, corrected
grammer, and added citations revised for submission to JCA
3d Spinfoam Quantum Gravity: Matter as a Phase of the Group Field Theory
An effective field theory for matter coupled to three-dimensional quantum
gravity was recently derived in the context of spinfoam models in
hep-th/0512113. In this paper, we show how this relates to group field theories
and generalized matrix models. In the first part, we realize that the effective
field theory can be recasted as a matrix model where couplings between matrices
of different sizes can occur. In a second part, we provide a family of
classical solutions to the three-dimensional group field theory. By studying
perturbations around these solutions, we generate the dynamics of the effective
field theory. We identify a particular case which leads to the action of
hep-th/0512113 for a massive field living in a flat non-commutative space-time.
The most general solutions lead to field theories with non-linear redefinitions
of the momentum which we propose to interpret as living on curved space-times.
We conclude by discussing the possible extension to four-dimensional spinfoam
models.Comment: 17 pages, revtex4, 1 figur
Euclidean three-point function in loop and perturbative gravity
We compute the leading order of the three-point function in loop quantum
gravity, using the vertex expansion of the Euclidean version of the new spin
foam dynamics, in the region of gamma<1. We find results consistent with Regge
calculus in the limit gamma->0 and j->infinity. We also compute the tree-level
three-point function of perturbative quantum general relativity in position
space, and discuss the possibility of directly comparing the two results.Comment: 16 page
Coupling gauge theory to spinfoam 3d quantum gravity
We construct a spinfoam model for Yang-Mills theory coupled to quantum
gravity in three dimensional riemannian spacetime. We define the partition
function of the coupled system as a power series in g_0^2 G that can be
evaluated order by order using grasping rules and the recoupling theory. With
respect to previous attempts in the literature, this model assigns the
dynamical variables of gravity and Yang-Mills theory to the same simplices of
the spinfoam, and it thus provides transition amplitudes for the spin network
states of the canonical theory. For SU(2) Yang-Mills theory we show explicitly
that the partition function has a semiclassical limit given by the Regge
discretization of the classical Yang-Mills action.Comment: 18 page
Spin foams with timelike surfaces
Spin foams of 4d gravity were recently extended from complexes with purely
spacelike surfaces to complexes that also contain timelike surfaces. In this
article, we express the associated partition function in terms of vertex
amplitudes and integrals over coherent states. The coherent states are
characterized by unit 3--vectors which represent normals to surfaces and lie
either in the 2--sphere or the 2d hyperboloids. In the case of timelike
surfaces, a new type of coherent state is used and the associated completeness
relation is derived. It is also shown that the quantum simplicity constraints
can be deduced by three different methods: by weak imposition of the
constraints, by restriction of coherent state bases and by the master
constraint.Comment: 22 pages, no figures; v2: remarks on operator formalism added in
discussion; correction: the spin 1/2 irrep of the discrete series does not
appear in the Plancherel decompositio
A Simple Explanation for DAMA with Moderate Channeling
We consider the possibility that the DAMA signal arises from channeled events
in simple models where the dark matter interaction with nuclei is suppressed at
small momenta. As with the standard WIMP, these models have two parameters (the
dark matter mass and the size of the cross-section), without the need to
introduce an additional energy threshold type of parameter. We find that they
can be consistent with channeling fractions as low as about ~ 15%, so long as
at least ~70% of the nuclear recoil energy for channeled events is deposited
electronically. Given that there are reasons not to expect very large
channeling fractions, these scenarios make the channeling explanation of DAMA
much more compelling.Comment: 6 pages, 2 figure
Standard Cosmological Evolution in a Wide Range of f(R) Models
Using techniques from singular perturbation theory, we explicitly calculate
the cosmological evolution in a class of modified gravity models. By
considering the (m)CDTT model, which aims to explain the current acceleration
of the universe with a modification of gravity, we show that Einstein evolution
can be recovered for most of cosmic history in at least one f(R) model. We show
that a standard epoch of matter domination can be obtained in the mCDTT model,
providing a sufficiently long epoch to satisfy observations. We note that the
additional inverse term will not significantly alter standard evolution until
today and that the solution lies well within present constraints from Big Bang
Nucleosynthesis. For the CDTT model, we analyse the ``recent radiation epoch''
behaviour (a \propto t^{1/2}) found by previous authors. We finally generalise
our findings to the class of inverse power-law models. Even in this class of
models, we expect a standard cosmological evolution, with a sufficient matter
domination era, although the sign of the additional term is crucial.Comment: 15 pages, 6 figures (1 new figure), new version considers both CDTT
and mCDTT models. References added. Accepted by Phys Rev
- …