395 research outputs found
Comparison from Dynavision Training on Concussion Vital Signs Performance
In Volume 3, Issue 1 of the JSMAHS you will find Professional research abstracts, as well as Under Graduate student research abstracts, case reports, and critically appraised topics.
Thank you for viewing this 3rd Annual OATA Special Edition
Comparison from Dynavision Training on Concussion Vital Signs Performance
In Volume 3, Issue 1 of the JSMAHS you will find Professional research abstracts, as well as Under Graduate student research abstracts, case reports, and critically appraised topics.
Thank you for viewing this 3rd Annual OATA Special Edition
A reproducible notebook to acquire, process and analyse satellite imagery
Satellite imagery is often used to study and monitor Earth surface changes. The open availability and extensive temporal coverage of Landsat imagery has enabled changes in temperature, wind, vegetation and ice melting speed for a period of up to 46 years. Yet, the use of satellite imagery to study cities has remained underutilised, partly due to the lack of a methodological approach to capture features and changes in the urban environment. This notebook offers a framework based on Python tools to demonstrate how to batch-download high-resolution satellite imagery; and enable the extraction, analysis and visualisation of features of the built environment to capture long-term urban changes
Subglacial Drainage Evolution Modulates Seasonal Ice Flow Variability of Three Tidewater Glaciers in Southwest Greenland
B.J.D was funded in the form of a PhD studentship provided by the Scottish Association for Geosciences, Environment and Society (SAGES) and the University of St Andrews, UK. J.M.L is supported by a UKRI Future Leaders Fellowship (Grant No. MR/S017232/1). D.F would like to acknowledge the support of this work through the EPSRC and ESRC Centre for Doctoral Training on Quantification and Management of Risk and Uncertainty in Complex Systems Environments Grant No. (EP/L015927/1).Surfaceâderived meltwater can access the bed of the Greenland Ice Sheet, causing seasonal velocity variations. The magnitude, timing and net impact on annual average ice flow of these seasonal perturbations depends on the hydraulic efficiency of the subglacial drainage system. We examine the relationships between drainage system efficiency and ice velocity, at three contrasting tidewater glaciers in southwest Greenland during 2014â2019, using highâresolution remotely sensed ice velocities, modelled surface melting, subglacial discharge at the terminus and results from buoyant plume modelling. All glaciers underwent a seasonal speedâup, which usually coincided with surface meltâonset, and subsequent slowâdown, which usually followed inferred subglacial channelisation. The amplitude and timing of these speed variations differed between glaciers, with the speedâup being larger and more prolonged at our fastest study glacier. At all glaciers, however, the seasonal variations in ice flow are consistent with inferred changes in hydraulic efficiency of the subglacial drainage system, and qualitatively indicative of a flow regime in which annuallyâaveraged ice velocity is relatively insensitive to interâannual variations in meltwater supply â soâcalled âice flow selfâregulationâ. These findings suggest that subglacial channel formation may exert a strong control on seasonal ice flow variations, even at fastâflowing tidewater glaciers.Publisher PDFPeer reviewe
Modification of amorphous and microcrystalline silicon film properties after irradiation with MeV and GeV protons
It is well known that the degree of crystallinity has a prominent influence on the stability of Silicon under proton irradiation. Amorphous silicon films are much more stable than mono- or polycrystalline silicon substrates or microcrystalline silicon thin films. In particular it has been shown, that in a micromorph tandem solar cell irradiated with protons in the lower MeV energy range only the microcrystalline diode showed a pronounced decrease in photocurrent after
irradiation1. The proton irradiation induced damage in thick crystalline silicon samples has a maximum at beam energies between 1MeV and 4MeV and decreases for further increasing proton energies. However, irradiating an amorphous silicon/crystalline silicon heterojunction solar cell with a relatively dose of 24GeV, we observed a very strong drop in conversion efficiency with only minor recovery after sample annealing. In literature it has been reported 2,
that the degradation of amorphous silicon is negligible for proton energies above 100MeV. In order to clarify to which extent also the thin film top layer of the hetero solar cell is affected by the proton irradiation, we exposed a variety of thin film silicon samples either to a 1.7MeV beam with a dose of 5.1012 protons/cm2 or to a 24GeV beam with a dose of 5 .1013 protons/cm2. The investigated intrinsic, p-type and n-type amorphous and microcrystalline silicon films have been deposited by conventional plasma deposition under variation of the silane / hydrogen gas phase ratio. Raman measurements have been done in order to determine the order of crystallinity obtained under various deposition conditions. We observed even at 24GeV a clear modification in the electrical characteristics of the films. Temperature dependent measurements of the dark current revealed in particular for all doped samples a significant increase of the activation energy, that might be explained by a decrease of the dopant efficiency, while for intrinsic a-Si:H layers the increasing activation energy is due to deep defect creation
Retargeting the Coxsackievirus and Adenovirus Receptor to the Apical Surface of Polarized Epithelial Cells Reveals the Glycocalyx as a Barrier to Adenovirus-Mediated Gene Transfer
Lumenal delivery of adenovirus vectors (AdV) results in inefficient gene transfer to human airway epithelium. The human coxsackievirus and adenovirus receptor (hCAR) was detected by immunofluorescence selectively at the basolateral surfaces of freshly excised human airway epithelial cells, suggesting that the absence of apical hCAR constitutes a barrier to adenovirus-mediated gene delivery in vivo. In transfected polarized Madin-Darby canine kidney cells, wild-type hCAR was expressed selectively at the basolateral membrane, whereas hCAR lacking the transmembrane and/or cytoplasmic domains was expressed on both the basolateral and apical membranes. Cells expressing apical hCAR still were not efficiently transduced by AdV applied to the apical surface. However, after the cells were treated with agents that remove components of the apical surface glycocalyx, AdV transduction occurred. These results indicate that adenovirus can infect via receptors located at the apical cell membrane but that the glycocalyx impedes interaction of AdV with apical receptors
Artemin, a Novel Member of the GDNF Ligand Family, Supports Peripheral and Central Neurons and Signals through the GFRα3âRET Receptor Complex
AbstractThe glial cell lineâderived neurotrophic factor (GDNF) ligands (GDNF, Neurturin [NTN], and Persephin [PSP]) signal through a multicomponent receptor system composed of a high-affinity binding component (GFRα1âGFRα4) and a common signaling component (RET). Here, we report the identification of Artemin, a novel member of the GDNF family, and demonstrate that it is the ligand for the former orphan receptor GFRα3âRET. Artemin is a survival factor for sensory and sympathetic neurons in culture, and its expression pattern suggests that it also influences these neurons in vivo. Artemin can also activate the GFRα1âRET complex and supports the survival of dopaminergic midbrain neurons in culture, indicating that like GDNF (GFRα1âRET) and NTN (GFRα2âRET), Artemin has a preferred receptor (GFRα3âRET) but that alternative receptor interactions also occur
Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.
New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; nâ=â17 post-mortem samples from controls; nâ=â12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved
Oxidative Stress-Induced STIM2 Cysteine Modifications Suppress Store-Operated Calcium Entry
Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand on NK Cells Protects From Hepatic Ischemia-Reperfusion Injury
BACKGROUND:
Ischemia-reperfusion injury (IRI) significantly contributes to graft dysfunction after liver transplantation. Natural killer (NK) cells are crucial innate effector cells in the liver and express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a potent inducer of hepatocyte cell death. Here, we investigated if TRAIL expression on NK cells contributes to hepatic IRI.
METHODS:
The outcome after partial hepatic IRI was assessed in TRAIL-null mice and contrasted to C57BL/6J wild-type mice and after NK cell adoptive transfer in RAG2/common gamma-null mice that lack T, B, and NK cells. Liver IRI was assessed by histological analysis, alanine aminotransferase, hepatic neutrophil activation by myeloperoxidase activity, and cytokine secretion at specific time points. NK cell cytotoxicity and differentiation were assessed in vivo and in vitro.
RESULTS:
Twenty-four hours after reperfusion, TRAIL-null mice exhibited significantly higher serum transaminases, histological signs of necrosis, neutrophil infiltration, and serum levels of interleukin-6 compared to wild-type animals. Adoptive transfer of TRAIL-null NK cells into immunodeficient RAG2/common gamma-null mice was associated with significantly elevated liver damage compared to transfer of wild-type NK cells. In TRAIL-null mice, NK cells exhibit higher cytotoxicity and decreased differentiation compared to wild-type mice. In vitro, cytotoxicity against YAC-1 and secretion of interferon gamma by TRAIL-null NK cells were significantly increased compared to wild-type controls.
CONCLUSIONS:
These experiments reveal that expression of TRAIL on NK cells is protective in a murine model of hepatic IRI through modulation of NK cell cytotoxicity and NK cell differentiation
- âŠ