159 research outputs found

    Matrix quality and disturbance frequency drive evolution of species behavior at habitat boundaries

    Get PDF
    Previous theoretical studies suggest that a species' landscape should influence the evolution of its dispersal characteristics, because landscape structure affects the costs and benefits of dispersal. However, these studies have not considered the evolution of boundary crossing, that is, the tendency of animals to cross from habitat to nonhabitat ("matrix"). It is important to understand this dispersal behavior, because of its effects on the probability of population persistence. Boundary-crossing behavior drives the rate of interaction with matrix, and thus, it influences the rate of movement among populations and the risk of dispersal mortality. We used an individual-based, spatially explicit model to simulate the evolution of boundary crossing in response to landscape structure. Our simulations predict higher evolved probabilities of boundary crossing in landscapes with more habitat, less fragmented habitat, higher-quality matrix, and more frequent disturbances (i.e., fewer generations between local population extinction events). Unexpectedly, our simulations also suggest that matrix quality and disturbance frequency have much stronger effects on the evolution of boundary crossing than either habitat amount or habitat fragmentation. Our results suggest that boundary-crossing responses are most affected by the costs of dispersal through matrix and the benefits of escaping local extinction events. Evolution of optimal behavior at habitat boundaries in response to the landscape may have implications for species in human-altered landscapes, because this behavior may become suboptimal if the landscape changes faster than the species' evolutionary response to that change. Understanding how matrix quality and habitat disturbance drive evolution of behavior at boundaries, and how this in turn influences the extinction risk of species in human-altered landscapes should help us identify species of conservation concern and target them for management

    Mechanisms affecting population density in fragmented habitat

    Get PDF
    We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density, and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive, effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors. First, when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post-fragmentation studies must, therefore, be adjusted to match the pace of post-fragmentation movement responses

    Evaluating the effectiveness of road mitigation measures.

    Get PDF
    The last 20 years have seen a dramatic increase in efforts to mitigate the negative effects of roads and traffic on wildlife, including fencing to prevent wildlife- vehicle collisions and wildlife crossing structures to facilitate landscape connectivity. While not necessarily explicitly articulated, the fundamental drivers behind road mitigation are human safety, animal welfare, and/or wildlife conservation. Concomitant with the increased effort to mitigate has been a focus on evaluating road mitigation. So far, research has mainly focussed on assessing the use of wildlife crossing structures, demonstrating that a broad range of species use them. However, this research has done little to address the question of the effectiveness of crossing structures, because use of a wildlife crossing structure does not necessarily equate to its effectiveness. The paucity of studies directly examining the effectiveness of crossing structures is exacerbated by the fact that such studies are often poorly designed, which limits the level of inference that can be made. Without well performed evaluations of the effectiveness of road mitigation measures, we may endanger the viability of wildlife populations and inefficiently use financial resources by installing structures that are not as effective as we think they are. In this paper we outline the essential elements of a good experimental design for such assessments and prioritize the parameters to be measured. The framework we propose will facilitate col- laboration between road agencies and scientists to undertake research programs that fully evaluate effectiveness of road mitigation measures. We discuss the added value of road mitigation evaluations for policy makers and transportation agencies and provide recom- mendations on how to incorporate such evaluations in road planning practices

    Landscape heterogeneity and metapopulation dynamics

    No full text
    Landscape ecology has rapidly established itself as an interdisciplinary research field worldwide in the past few decades. However, diversification in perspectives and approaches has apparently caused some concerns with the “identity” of the field in recent years. For example, Wiens (1999) stated that “landscape ecology continues to suffer from something of an identity crisis,” while Moss (1999) warned that landscape ecology's “healthy, youthful development will be cut off before it matures if it does not recognize and develop its own distinctive core and focus.” As landscape ecologists, we feel that we should not be particularly worried about the identity or the fate of the field. Its identity is to some extent self-defining through the activities that people calling themselves landscape ecologists undertake, and its fate will be determined by its utility and its ability to provide techniques, approaches, and applications which help tackle the complex environmental management challenges facing humanity. However, we do think that, after two decades of rapid developments in both theory and practice, landscape ecology can benefit from a forward-looking introspection
    • …
    corecore