2,935 research outputs found

    Why We Dance and Why We Don\u27t

    Get PDF

    Self-monitoring for improving control of blood pressue in patients with hypertension

    Get PDF
    The objective of this review is to determine the effect of SBPM in adults with hypertension on blood pressure control as compared to OBPM or usual care

    Extinction and backscatter measurements of Antarctic PSC's, 1987: Implications for particle and vapor removal

    Get PDF
    The temperature dependence is examined of optical properties measured in the Antarctic during 1987 at the 70 mb level (near 18 km), a level chosen to correlate the results with in situ measurements made from the NASA-Ames ER-2 aircraft during the 1987 Airborne Antarctic Ozone Experiment (AAOE). The data set consists of extinction measurements by Sam 2 inside the Antarctic polar vortex from May to October 1987; and backscatter measurements by the UV-DIAL (Ultraviolet Differential Absorption Lidar) system aboard the Ames DC-8 aircraft during selected AAOE flights. Observed trends are compared with results from a revised version of Pole and McCormick's model to classify the PSC observations by Type (1 or 2) and infer the temporal behavior of the ambient aerosol and ambient vapor mixing ratios. The sample figures show monthly ensembles of the 70-mb Sam 2 extinction ratio (the ratio of aerosol or PSC extinction to molecule extinction) as a function of NMC temperature at the beginning (June) and (October) of the 1987 Antarctic winter. Both ensembles show two rather distinct clusters of points: one oriented in the near vertical direction which depicts the change with temperature of the ambient aerosol extinction ratio; and a second cluster oriented in the near horizontal direction whose position on the vertical scale marks a change in particle phase (i.e., PSC formation) and whose length (the extinction enhancement related to that of the ambient aerosol) is an indicator of PSC type

    Recovery from disturbance requires resynchronization of ecosystem nutrient cycles

    Get PDF
    Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low N:P ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance

    In-situ measurements of total reactive nitrogen, total water vapor, and aerosols in polar stratospheric clouds in the Antarctic stratosphere

    Get PDF
    Measurements of total reactive nitrogen, NOy, total water vapor, and aerosols were made as part of the Airborne Antarctic Ozone Experiment. The measurements were made using instruments located onboard the NASA ER-2 aircrafts which conducted twelve flights over the Antarctic continent reaching altitudes of 18 km at 72 S latitude. Each instrument utilized an ambient air sample and provided a measurement up to 1 Hz or every 200 m of flight path. The data presented focus on the flights of Aug. 17th and 18th during which Polar Stratospheric Clouds (PSCs) were encountered containing concentrations of 0.5 to 1.0 micron diameter aerosols greater than 1 cm/cu. The temperature pressure during these events ranged as low as 184 K near 75 mb pressure, with water values near 3.5 ppm by volume (ppmv). With the exception of two short periods, the PSC activity was observed at temperatures above the frost point of water over ice. The data gathered during these flights are analyzed and presented

    Prevalence of HIV Drug Resistance Mutations in HIV Type 1 Isolates in Antiretroviral Therapy Naïve Population from Northern India

    Get PDF
    Objective. The increased use of antiretroviral therapy (ART) has reduced the morbidity and mortality associated with HIV, adversely leading to the emergence of HIV drug resistance (HIVDR). In this study we aim to evaluate the prevalence of HIVDR mutations in ART-naive HIV-1 infected patients from northern India. Design. Analysis was performed using Viroseq genotyping system based on sequencing of entire protease and two-thirds of the Reverse Transcriptase (RT) region of pol gene. Results. Seventy three chronic HIV-1 infected ART naïve patients eligible for first line ART were enrolled from April 2006 to August 2008. In 68 patients DNA was successfully amplified and sequencing was done. 97% of HIV-1 strains belonged to subtype C, and one each to subtype A1 and subtype B. The overall prevalence of primary DRMs was 2.9% [2/68, 95% confidence interval (CI), 0.3%–10.2%]. One patient had a major RT mutation M184V, known to confer resistance to lamivudine, and another had a major protease inhibitor (PI) mutation D30N that imparts resistance to nelfinavir. Conclusion. Our study shows that primary HIVDR mutations have a prevalence of 2.9% among ART-naive chronic HIV-1 infected individuals

    The promise and peril of intensive-site-based ecological research: insights from the Hubbard Brook ecosystem study

    Get PDF
    Abstract. Ecological research is increasingly concentrated at particular locations or sites. This trend reflects a variety of advantages of intensive, site-based research, but also raises important questions about the nature of such spatially delimited research: how well does site based research represent broader areas, and does it constrain scientific discovery?We provide an overview of these issues with a particular focus on one prominent intensive research site: the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. Among the key features of intensive sites are: long-term, archived data sets that provide a context for new discoveries and the elucidation of ecological mechanisms; the capacity to constrain inputs and parameters, and to validate models of complex ecological processes; and the intellectual cross-fertilization among disciplines in ecological and environmental sciences. The feasibility of scaling up ecological observations from intensive sites depends upon both the phenomenon of interest and the characteristics of the site. An evaluation of deviation metrics for the HBEF illustrates that, in some respects, including sensitivity and recovery of streams and trees from acid deposition, this site is representative of the Northern Forest region, of which HBEF is a part. However, the mountainous terrain and lack of significant agricultural legacy make the HBEF among the least disturbed sites in the Northern Forest region. Its relatively cool, wet climate contributes to high stream flow compared to other sites. These similarities and differences between the HBEF and the region can profoundly influence ecological patterns and processes and potentially limit the generality of observations at this and other intensive sites. Indeed, the difficulty of scaling up may be greatest for ecological phenomena that are sensitive to historical disturbance and that exhibit the greatest spatiotemporal variation, such as denitrification in soils and the dynamics of bird communities. Our research shows that end member sites for some processes often provide important insights into the behavior of inherently heterogeneous ecological processes. In the current era of rapid environmental and biological change, key ecological responses at intensive sites will reflect both specific local drivers and regional trends

    Laboratory evaluation of the effect of nitric acid uptake on frost point hygrometer performance

    Get PDF
    Chilled mirror hygrometers (CMH) are widely used to measure water vapour in the troposphere and lower stratosphere from balloon-borne sondes. Systematic discrepancies among in situ water vapour instruments have been observed at low water vapour mixing ratios (<5 ppm) in the upper troposphere and lower stratosphere (UT/LS). Understanding the source of the measurement discrepancies is important for a more accurate and reliable determination of water vapour abundance in this region. We have conducted a laboratory study to investigate the potential interference of gas-phase nitric acid (HNO<sub>3</sub>) with the measurement of frost point temperature, and consequently the water vapour mixing ratio, determined by CMH under conditions representative of operation in the UT/LS. No detectable interference in the measured frost point temperature was found for HNO<sub>3</sub> mixing ratios of up to 4 ppb for exposure times up to 150 min. HNO<sub>3</sub> was observed to co-condense on the mirror frost, with the adsorbed mass increasing linearly with time at constant exposure levels. Over the duration of a typical balloon sonde ascent (90–120 min), the maximum accumulated HNO<sub>3</sub> amounts were comparable to monolayer coverage of the geometric mirror surface area, which corresponds to only a small fraction of the actual frost layer surface area. This small amount of co-condensed HNO<sub>3</sub> is consistent with the observed lack of HNO<sub>3</sub> interference in the frost point measurement because the CMH utilizes significant reductions (>10%) in surface reflectivity by the condensate to determine H<sub>2</sub>O
    corecore