22 research outputs found

    Evaluation of Antimicrobial and Anti-Biofilm Formation Activities of Novel Poly(vinyl alcohol) Hydrogels Reinforced with Crosslinked Chitosan and Silver Nano-Particles

    No full text
    Novel hydrogels were prepared by blending chitosan and poly(vinyl alcohol), PVA, then crosslinking the resulting blends using trimellitic anhydride isothiocyanate at a concentration based on chitosan content in the blends. The weight ratios of chitosan: PVA in the blends were 1:3, 1:1, and 3:1 to produce three hydrogels symbolized as H13, H11, and H31, respectively. For a comparison, H10 was also prepared by crosslinking pure chitosan with trimellitic anhydride isothiocyanate. For further modification, three H31/silver nanocomposites (AgNPs) were synthesized using three different concentrations of silver nitrate to obtain H31/AgNPs1%, H31/AgNPs3% and H31/AgNPs5%. The structures of the prepared samples were emphasized using various analytical techniques. PVA has no inhibition activity against the tested microbes and biofilms. The antimicrobial and anti-biofilm formation activities of the investigated samples was arranged as: H31/AgNPs5% ≥ H31/AgNPs3% > H31/AgNPs1% > H10 > H31 > H11 > H13 > chitosan. H31/AgNPs5% and H31/AgNPs3% were more potent than Vancomycin and Amphotericin B against most of the tested microbes. Interestingly, H31 and H31/AgNPs3% were safe on the normal human cells. Consequently, hydrogels resulting from crosslinked blends of chitosan and PVA loaded with AgNPs in the same structure have significantly reinforced the antimicrobial and inhibition activity against the biofilms of PVA

    Superhydrophobic and Corrosion Behaviour of PVDF-CeO2 Composite Coatings

    No full text
    Composite coatings of polyvinylidene fluoride (PVDF)/CeO2 were developed by using the spray approach to explore the wetting and corrosion behaviour of coated materials for applications related to industry. PVDF was combined with different quantities of CeO2 nanoparticles followed by spraying onto glass, aluminium, and steel substrates. The sessile droplet method and microscopy studies were used to assess the wetting behaviour and morphology of the coated surfaces, respectively. The corrosion resistance of uncoated substrates coated with PVDF only was compared with those coated with PVDF/CeO2 nanoparticles through Tafel polarization techniques. In psi, the force of adhesion was measured between the coating layer and the substrates. The PVDF/CeO2-coated steel had a significantly greater water contact angle and lower contact angle hysteresis than coated aluminium and glass substrates, reaching 157 ± 2° and 8 ± 1°, respectively. The corrosion protection efficiency of the superhydrophobic PVDF/CeO2 coatings was considerably higher for steel and aluminium when compared with PVDF coatings. The PVDF/CeO2 coated substrates had modest adhesion between the coating layer and the substrates, but it was still acceptable. Furthermore, the PVDF/CeO2 coatings outperformed PVDF alone in terms of mechanical properties

    Preparation and Characterization of a New Polymeric Multi-Layered Material Based K-Carrageenan and Alginate for Efficient Bio-Sorption of Methylene Blue Dye

    No full text
    The current study highlights a novel bio-sorbent design based on polyelectrolyte multi-layers (PEM) biopolymeric material. First layer was composed of sodium alginate and the second was constituted of citric acid and k-carrageenan. The PEM system was crosslinked to non-woven cellulosic textile material. Resulting materials were characterized using FT-IR, SEM, and thermal analysis (TGA and DTA). FT-IR analysis confirmed chemical interconnection of PEM bio-sorbent system. SEM features indicated that the microspaces between fibers were filled with layers of functionalizing polymers. PEM exhibited higher surface roughness compared to virgin sample. This modification of the surface morphology confirmed the stability and the effectiveness of the grafting method. Virgin cellulosic sample decomposed at 370 °C. However, PEM samples decomposed at 250 °C and 370 °C, which were attributed to the thermal decomposition of crosslinked sodium alginate and k-carrageenan and cellulose, respectively. The bio-sorbent performances were evaluated under different experimental conditions including pH, time, temperature, and initial dye concentration. The maximum adsorbed amounts of methylene blue are 124.4 mg/g and 522.4 mg/g for the untreated and grafted materials, respectively. The improvement in dye sorption evidenced the grafting of carboxylate and sulfonate groups onto cellulose surface. Adsorption process complied well with pseudo-first-order and Langmuir equations

    High-Quality Bioethanol and Vinegar Production from Saudi Arabia Dates: Characterization and Evaluation of Their Value and Antioxidant Efficiency

    No full text
    Dates are very rich in various nutritious compounds, especially reducing sugars. Sugars ensure both anaerobic and aerobic fermentation, carried out respectively for the production of bioethanol and vinegar. Currently, the world production of dates is constantly increasing owing to the significant improvement in production conditions following the continuous scientific and technological development of this field. The Kingdom of Saudi Arabia is one of the most important world producers of dates, occupying the second place by producing 17% of the total world production. This is why it has become a national priority to find new ways to exploit and further valorize dates and palm waste in the development of new and sustainable products. The present study was designed to explore the possible study of a variety of date palm by-products in the production of bioethanol and vinegar via Saccharomyces cerevisiae. Different parameters of bioethanol and vinegar production, including pH, time, fermentation temperature, and yeast concentration, were studied and optimized. Chemical, physicochemical, purity behavior, and antioxidant performance were carried out via NMR, FTIR, and antioxidant activity essays (TPC, DPPH, FRAP, and β-carotene bleaching test) with the aim to evaluate the potential of the bioethanol and vinegar samples extracted from date palm by-products. Khalas date vinegar revealed significantly more phenolic content (5.81 mg GAE/mL) (p < 0.05) than the different kinds of vinegar tested (Deglet Nour and Black dates; 2.3 and 1.67 mg GAE/mL, respectively) and the commercial vinegar (1.12 mg GAE/mL). The Khalas date vinegar generally showed a higher carotenoid value and better antioxidant activity than the other vinegars extracted from other date varieties and commercially available vinegar. The results confirmed the high quality of the bioethanol and vinegar products, and the efficiency of the developed production processes

    A Reversible Optical Sensor Film for Mercury Ions Discrimination Based on Isoxazolidine Derivative and Exhibiting pH Sensing

    No full text
    We developed a new optical sensor for tracing Hg(II) ions. The detection affinity examines within a concentration range of 0–4.0 µM Hg(II). The sensor film is based on Methyl 2-hydroxy-3-(((2S,2’R,3a’S,5R)-2-isopropyl-5,5’-dimethyl-4’-oxotetrahydro-2’H-spiro[cy-clohexane-1,6’-im-idazo[1,5-b]isoxazol]-2’-yl)methyl)-5-methylbenzoate (IXZD). The novel synthesized compound could be utilized as an optical turn-on chemosensor for pH. The emission intensity is highly enhanced for the deprotonated form concerning the protonated form. IXZD probe has a characteristic fluorescence peak at 481 nm under excitation of 351 nm with large Stocks shift of approximately 130 nm. In addition, the binding process of IXZD:Hg(II) presents a 1:1 molar ratio which is proved by the large quench of the 481 nm emission peak of IXZD and the growth of a new emission peak at 399 nm (blue shift). The binding configurations with one Hg(II) cation and its electronic characteristics were investigated by applying the Density Functional Theory (DFT) and the time-dependent DFT (TDDFT) calculations. Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical results were provided to examine Hg(II)-IXZD structures and their electronic properties in solution. The developed chemical sensor was offered based on the intramolecular charge transfer (ICT) mechanism. The sensor film has a significantly low limit of detection (LOD) for Hg(II) of 0.025 μM in pH 7.4, with a relative standard deviation RSDr (1%, n = 3). Lastly, the IXZD shows effective binding affinity to mercury ions, and the binding constant Kb was estimated to be 5.80 × 105 M−1. Hence, this developed optical sensor film has a significant efficiency for tracing mercury ions based on IXZD molecule-doped sensor film

    Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review

    No full text
    Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed
    corecore