4,005 research outputs found

    Zero Temperature Phase Transition in Spin-ladders: Phase Diagram and Dynamical studies of Cu(Hp)Cl

    Full text link
    In a magnetic field, spin-ladders undergo two zero-temperature phase transitions at the critical fields Hc1 and Hc2. An experimental review of static and dynamical properties of spin-ladders close to these critical points is presented. The scaling functions, universal to all quantum critical points in one-dimension, are extracted from (a) the thermodynamic quantities (magnetization) and (b) the dynamical functions (NMR relaxation). A simple mapping of strongly coupled spin ladders in a magnetic field on the exactly solvable XXZ model enables to make detailed fits and gives an overall understanding of a broad class of quantum magnets in their gapless phase (between Hc1 and Hc2). In this phase, the low temperature divergence of the NMR relaxation demonstrates its Luttinger liquid nature as well as the novel quantum critical regime at higher temperature. The general behaviour close these quantum critical points can be tied to known models of quantum magnetism.Comment: few corrections made, 15 pages, to be published in European Journal of Physics

    Atomic and Electronic Structure of a Rashba pp-nn Junction at the BiTeI Surface

    Get PDF
    The non-centrosymmetric semiconductor BiTeI exhibits two distinct surface terminations that support spin-split Rashba surface states. Their ambipolarity can be exploited for creating spin-polarized pp-nn junctions at the boundaries between domains with different surface terminations. We use scanning tunneling microscopy/spectroscopy (STM/STS) to locate such junctions and investigate their atomic and electronic properties. The Te- and I-terminated surfaces are identified owing to their distinct chemical reactivity, and an apparent height mismatch of electronic origin. The Rashba surface states are revealed in the STS spectra by the onset of a van Hove singularity at the band edge. Eventually, an electronic depletion is found on interfacial Te atoms, consistent with the formation of a space charge area in typical pp-nn junctions.Comment: 5 pages, 4 figure

    NMR imaging of the soliton lattice profile in the spin-Peierls compound CuGeO_3

    Full text link
    In the spin-Peierls compound CuGeO3_{3}, the commensurate-incommensurate transition concerning the modulation of atomic position and the local spin-polarization is fully monitored at T=0 by the application of an external magnetic field (HH) above a threshold value HcH_{c}\simeq 13 Tesla. The solitonic profile of the spin-polarization, as well as its absolute magnitude, has been precisely imaged from 65Cu^{65}Cu NMR lineshapes obtained for h=(HHc)/Hch=(H-H_{c})/H_{c} varying from 0.0015 to 2. This offers a unique possibility to test quantitatively the various numerical and analytical methods developed to solve a generic Hamiltonian in 1-D physics, namely strongly interacting fermions in presence of electron-phonon coupling at arbitrary band filling.Comment: 3 pages, 4 eps figures, RevTeX, submitted to Physical Review Lette

    Possible Localized Modes in the Uniform Quantum Heisenberg Chains of Sr2CuO3

    Full text link
    A model of mobile-bond defects is tentatively proposed to analyze the "anomalies" observed on the NMR spectrum of the quantum Heisenberg chains of Sr2CuO3. A bond-defect is a local change in the exchange coupling. It results in a local alternating magnetization (LAM), which when the defect moves, creates a flipping process of the local field seen by each nuclear spin. At low temperature, when the overlap of the LAM becomes large, the defects form a periodic structure, which extends over almost all the chains. In that regime, the density of bond-defects decreases linearly with T.Comment: 4 pages + 3 figures. To appear in Physical Review

    Charge Order Driven spin-Peierls Transition in NaV2O5

    Full text link
    We conclude from 23Na and 51V NMR measurements in NaxV2O5(x=0.996) a charge ordering transition starting at T=37 K and preceding the lattice distortion and the formation of a spin gap Delta=106 K at Tc=34.7 K. Above Tc, only a single Na site is observed in agreement with the Pmmn space group of this first 1/4-filled ladder system. Below Tc=34.7 K, this line evolves into eight distinct 23Na quadrupolar split lines, which evidences a lattice distortion with, at least, a doubling of the unit cell in the (a,b) plane. A model for this unique transition implying both charge density wave and spin-Peierls order is discussed.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Mixing of magnetic and phononic excitations in incommensurate Spin-Peierls systems

    Full text link
    We analyze the excitation spectra of a spin-phonon coupled chain in the presence of a soliton. This is taken as a microscopic model of a Spin-Peierls material placed in a high magnetic field. We show, by using a semiclassical approximation in the bosonized representation of the spins that a trapped magnetic state obtained in the adiabatic approximation is destroyed by dynamical phonons. Low energy states are phonons trapped by the soliton. When the magnetic gap is smaller than the phonon frequencies the only low energy state is a mixed magneto-phonon state with the energy of the gap. We emphasize that our results are relevant for the Raman spectra of the inorganic Spin-Peierls material CuGeO3_3.Comment: 5 pages, latex, 2 figures embedded in the tex

    Identification of Nuclear Relaxation Processes in a Gapped Quantum Magnet: Proton NMR in the S=1/2 Heisenberg Ladder Cu2(C5H12N2)2Cl4

    Full text link
    The proton hyperfine shift K and NMR relaxation rate 1/T11/T_1 have been measured as a function of temperature in the S=1/2 Heisenberg antiferromagnetic ladder Cu2(C5H12N2)2Cl4. The presence of a spin gap ΔJJ\Delta \simeq J_\perp-J_\parallel in this strongly coupled ladder (J<JJ_\parallel < J_\perp) is supported by the K and 1/T11/T_1 results. By comparing 1/T11/T_1 at two different proton sites, we infer the evolution of the spectral functions Sz(q,ωn)S_z(q,\omega_n) and S(q,ωn)S_\perp(q,\omega_n). When the gap is significantly reduced by the magnetic field, two different channels of nuclear relaxation, specific to gapped antiferromagnets, are identified and are in agreement with theoretical predictions.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Letter

    Ab initio evaluation of the charge-ordering in αNaV2O5\alpha^\prime NaV_2O_5

    Full text link
    We report {\it ab initio} calculations of the charge ordering in αNaV2O5\alpha^\prime NaV_2O_5 using large configurations interaction methods on embedded fragments. Our major result is that the 2py2p_y electrons of the bridging oxygen of the rungs present a very strong magnetic character and should thus be explicitly considered in any relevant effective model. The most striking consequence of this result is that the spin and charge ordering differ substantially, as differ the experimental results depending on whether they are sensitive to the spin or charge density.Comment: 4 page

    Thermal Conductivity of the Spin Peierls Compound CuGeO_3

    Full text link
    The thermal conductivity of the Spin-Peierls (SP) compound CuGeO_3 was measured in magnetic fields up to 16 T. Above the SP transition, the heat transport due to spin excitations causes a peak at around 22 K, while below the transition the spin excitations rapidly diminish and the heat transport is dominated by phonons; however, the main scattering process of the phonons is with spin excitations, which demonstrates itself in an unusual peak in the thermal conductivity at about 5.5 K. This low-temperature peak is strongly suppressed with magnetic fields in excess of 12.5 T.Comment: 6 pages, including 2 postscript figure

    Electronic Structure of Stripes in Two-Dimensional Hubbard Model

    Full text link
    Focusing on La_{2-x}Sr_{x}CuO_{4}, we study the stripe structure by the self-consistent mean-field theory of the Hubbard model. By introducing the realistic Fermi surface topology, the SDW-gapped insulator is changed to metallic. The solitonic features of the stripe structure and the contribution of the mid-gap states are presented. We consider the band dispersion, the local density of states, the spectral weight, and the optical conductivity, associated with the solitonic structure. These results may provide important information for the experimental research of the stripe structure, such as the angle-resolved photoemission experiments. The ``Fermi surface'' shape is changed depending on the ratio of the incommensurability delta and the hole density n_h. In real space, only the stripe region is metallic when delta/n_h is large.Comment: LaTeX 12 pages (using jpsj macros) with 16 figure
    corecore