61 research outputs found

    Anisotropic AC Behavior of Multifilamentary Bi-2223/Ag Tapes

    Full text link
    In this communication, we report on the anisotropy of the superconducting properties of multifilamentary Bi-based tapes experimentally investigated by AC magnetic susceptibility measurements. The susceptibility χ=χ′−jχ′′\chi= \chi' - j \chi'' was measured using a commercial system and a couple of orthogonal pick-up coils. The χ′′\chi'' vs. temperature curves were shown to exhibit two peaks. The smaller of the peaks, occurring near T = 72K, was only visible for particular field directions and within a given frequency window. Such results point out the role played by the phase difference between the applied magnetic field and the internal magnetic field seen by the filaments.Comment: 4 pages (2 columns); 4 figure

    Use of 2G coated conductors for efficient shielding of DC magnetic fields

    Full text link
    This paper reports the results of an experimental investigation of the performance of two types of magnetic screens assembled from YBa2Cu3O7-d (YBCO) coated conductors. Since effective screening of the axial DC magnetic field requires the unimpeded flow of an azimuthal persistent current, we demonstrate a configuration of a screening shell made out of standard YBCO coated conductor capable to accomplish that. The screen allows the persistent current to flow in the predominantly azimuthal direction at a temperature of 77 K. The persistent screen, incorporating a single layer of superconducting film, can attenuate an external magnetic field of up to 5 mT by more than an order of magnitude. For comparison purposes, another type of screen which incorporates low critical temperature quasi-persistent joints was also built. The shielding technique we describe here appears to be especially promising for the realization of large scale high-Tc superconducting screens.Comment: 8 pages, 3 figure

    Shielding efficiency and E(J) characteristics measured on large melt cast Bi-2212 hollow cylinders in axial magnetic fields

    Full text link
    We show that tubes of melt cast Bi-2212 used as current leads for LTS magnets can also act as efficient magnetic shields. The magnetic screening properties under an axial DC magnetic field are characterized at several temperatures below the liquid nitrogen temperature (77 K). Two main shielding properties are studied and compared with those of Bi-2223, a material that has been considered in the past for bulk magnetic shields. The first property is related to the maximum magnetic flux density that can be screened, Blim; it is defined as the applied magnetic flux density below which the field attenuation measured at the centre of the shield exceeds 1000. For a cylinder of Bi-2212 with a wall thickness of 5 mm and a large ratio of length over radius, Blim is evaluated to 1 T at T = 10 K. This value largely exceeds the Blim value measured at the same temperature on similar tubes of Bi-2223. The second shielding property that is characterized is the dependence of Blim with respect to variations of the sweep rate of the applied field, dBapp/dt. This dependence is interpreted in terms of the power law E = Ec(J/Jc)^n and allows us to determine the exponent n of this E(J) characteristics for Bi-2212. The characterization of the magnetic field relaxation involves very small values of the electric field. This gives us the opportunity to experimentally determine the E(J) law in an unexplored region of small electric fields. Combining these results with transport and AC shielding measurements, we construct a piecewise E(J) law that spans over 8 orders of magnitude of the electric field.Comment: 16 pages, 7 figure

    Magneto-thermal phenomena in bulk high temperature superconductors subjected to applied AC magnetic fields

    Full text link
    In the present work we study, both theoretically and experimentally, the temperature increase in a bulk high-temperature superconductor subjected to applied AC magnetic fields of large amplitude. We calculate analytically the equilibrium temperatures of the bulk sample as a function of the experimental parameters using a simple critical-state model for an infinitely long type-II superconducting slab or cylinder. The results show the existence of a limit heat transfer coefficient (AUlim) separating two thermal regimes with different characteristics. The theoretical analysis predicts a "forbidden" temperature window within which the temperature of the superconductor can never stabilize when the heat transfer coefficient is small. In addition, we determine an analytical expression of two threshold fields Htr1 and Htr2 characterizing the importance of magneto-thermal effects and show that a thermal runaway always occurs when the field amplitude is larger than Htr2. The theoretical predictions of the temperature evolution of the bulk sample during a self-heating process agree well with the experimental data. The simple analytical study presented in this paper enables order of magnitude thermal effects to be estimated for simple superconductor geometries under applied AC magnetic fields and can be used to predict the influence of experimental parameters on the self-heating characteristics of bulk type-II superconductors.Comment: 32 pages, 6 figure

    Electrical transport and percolation in magnetoresistive manganite / insulating oxide composites: case of La0.7Ca0.3MnO3 / Mn3O4

    Full text link
    We report the results of electrical resistivity measurements carried out on well-sintered La0.7Ca0.3MnO3 / Mn3O4 composite samples with almost constant composition of the magnetoresistive manganite phase (La0.7Ca0.3MnO3). A percolation threshold (fc) occurs when the La0.7Ca0.3MnO3 volume fraction is ~ 0.19. The dependence of the electrical resistivity as a function of La0.7Ca0.3MnO3 volume fraction (fLCMO) can be described by percolation-like phenomenological equations. Fitting the conducting regime (fLCMO > fc) by the percolation power law returns a critical exponent t value of 2.0 +/- 0.2 at room temperature and 2.6 +/-0.2 at 5 K. The increase of t is ascribed to the influence of the grain boundaries on the electrical conduction process at low temperature.Comment: 7 pages, 3 figures, accepted for publication in Phys. Rev.

    Modification of the trapped field in bulk high-temperature superconductors as a result of the drilling of a pattern of artificial columnar holes

    Full text link
    The trapped magnetic field is examined in bulk high-temperature superconductors that are artificially drilled along their c-axis. The influence of the hole pattern on the magnetization is studied and compared by means of numerical models and Hall probe mapping techniques. To this aim, we consider two bulk YBCO samples with a rectangular cross-section that are drilled each by six holes arranged either on a rectangular lattice (sample I) or on a centered rectangular lattice (sample II). For the numerical analysis, three different models are considered for calculating the trapped flux: (i), a two-dimensional (2D) Bean model neglecting demagnetizing effects and flux creep, (ii), a 2D finite-element model neglecting demagnetizing effects but incorporating magnetic relaxation in the form of an E-J power law, and, (iii), a 3D finite element analysis that takes into account both the finite height of the sample and flux creep effects. For the experimental analysis, the trapped magnetic flux density is measured above the sample surface by Hall probe mapping performed before and after the drilling process. The maximum trapped flux density in the drilled samples is found to be smaller than that in the plain samples. The smallest magnetization drop is found for sample II, with the centered rectangular lattice. This result is confirmed by the numerical models. In each sample, the relative drops that are calculated independently with the three different models are in good agreement. As observed experimentally, the magnetization drop calculated in the sample II is the smallest one and its relative value is comparable to the measured one. By contrast, the measured magnetization drop in sample (1) is much larger than that predicted by the simulations, most likely because of a change of the microstructure during the drilling process.Comment: Proceedings of EUCAS 09 conferenc

    An AC susceptometer for the characterization of large, bulk superconducting samples

    Full text link
    The main purpose of this work was to design, develop and construct a simple, low-cost AC susceptometer to measure large, bulk superconducting samples (up to 32 mm in diameter) in the temperature range 78-120 K. The design incorporates a double heating system that enables a high heating rate (25 K/hour) while maintaining a small temperature gradient (< 0.2 K) across the sample. The apparatus can be calibrated precisely using a copper coil connected in series with the primary coil. The system has been used successfully to measure the temperature dependence of the AC magnetic properties of entire RE-Ba-Cu-O [(RE)BCO] bulk superconducting domains. A typical AC susceptibility measurement run from 78 K to 95 K takes about 2 hours, with excellent temperature resolution (temperature step ~ 4 mK) around the critical temperature, in particular.Comment: 25 pages, 7 figures. Accepted for publication in Measurement Science and Technolog

    Pulsed-field magnetization of drilled bulk high-temperature superconductors: flux front propagation in the volume and on the surface

    Full text link
    We present a method for characterizing the propagation of the magnetic flux in an artificially drilled bulk high-temperature superconductor (HTS) during a pulsed-field magnetization. As the magnetic pulse penetrates the cylindrical sample, the magnetic flux density is measured simultaneously in 16 holes by means of microcoils that are placed across the median plane, i.e. at an equal distance from the top and bottom surfaces, and close to the surface of the sample. We discuss the time evolution of the magnetic flux density in the holes during a pulse and measure the time taken by the external magnetic flux to reach each hole. Our data show that the flux front moves faster in the median plane than on the surface when penetrating the sample edge; it then proceeds faster along the surface than in the bulk as it penetrates the sample further. Once the pulse is over, the trapped flux density inside the central hole is found to be about twice as large in the median plane than on the surface. This ratio is confirmed by modelling
    • …
    corecore