291 research outputs found

    Attenuated mismatch negativity in patients with first-episode antipsychotic-naive schizophrenia using a source-resolved method

    Get PDF
    Background: Mismatch negativity (MMN) is a measure of pre-attentive auditory information processing related to change detection. Traditional scalp-level EEG methods consistently find attenuated MMN in patients with chronic but not first-episode schizophrenia. In the current paper, we use a source-resolved method to assess MMN and hypothesize that more subtle changes can be identified with this analysis method. Method: Fifty-six first-episode antipsychotic-naïve schizophrenia (FEANS) patients (31 males, 25 females, mean age 24.6) and 64 matched controls (37 males, 27 females, mean age 24.8) were assessed for duration-, frequency- and combined-type MMN and P3a as well as 4 clinical, 3 cognitive and 3 psychopathological measures. To evaluate and correlate MMN at source-level, independent component analysis (ICA) was applied to the continuous EEG data to derive equivalent current dipoles which were clustered into 19 clusters based on cortical location. Results: No scalp channel group MMN or P3a amplitude differences were found. Of the localized clusters, several were in or near brain areas previously suggested to be involved in the MMN response, including frontal and anterior cingulate cortices and superior temporal and inferior frontal gyri. For duration deviants, MMN was attenuated at the right superior temporal gyrus in patients compared to healthy controls (p = 0.01), as was P3a at the superior frontal cortex (p = 0.01). No individual patient correlations with clinical, cognitive, or psychopathological measures survived correction for multiple comparisons. Conclusion: Attenuated source-localized MMN and P3a peak contributions can be identified in FEANS patients using a method based on independent component analysis (ICA). This indicates that deficits in pre-attentive auditory information processing are present at this early stage of schizophrenia and are not the result of disease chronicity or medication. This is to our knowledge the first study on FEANS patients using this more detailed method. Keywords: Mismatch negativity, Schizophrenia, First episode, EEG, IC

    Health professionals’ counselling on the use of infant formula: A scoping review

    Get PDF
    Vitenskapelig oversiktsartikkel/reviewObjective: Many parents experience lack of support and access to resources on how to prepare, handle, and provide formula milk to their infants. The purpose of this scoping review was to map and describe key information in existing research about how health-care professionals receive information and how they inform and counsel parents about formula milk. Design: A scoping review fulfilling the PRISMA-ScR checklist criteria used systematic searches targeting the study objective in the databases Embase, MEDLINE, and CINAHL on February 8th and 9th, 2022.Results: Six studies with 959 participants in total were included. The research designs were focus group studies with and without combining individual interviews, an individual interview study, a study consisting of individual interviews and ethnographic observations, a survey, and a two-phase study consisting of a qualitative interview and a quantitative survey. Findings indicate lack of evidence-based information pro-vided about infant formula by health care professionals when they counsel parents on formula feeding. Conclusions: Few studies focus on how healthcare professionals inform and counsel parents about formula milk. Health authorities should provide more evidence-based information to make formula feeding more feasible. Due to conflicting and omitted information, mothers often receive poor counselling on formula feeding.publishedVersio

    Two subgroups of antipsychotic-naive, first-episode schizophrenia patients identified with a Gaussian mixture model on cognition and electrophysiology

    Get PDF
    AbstractDeficits in information processing and cognition are among the most robust findings in schizophrenia patients. Previous efforts to translate group-level deficits into clinically relevant and individualized information have, however, been non-successful, which is possibly explained by biologically different disease subgroups. We applied machine learning algorithms on measures of electrophysiology and cognition to identify potential subgroups of schizophrenia. Next, we explored subgroup differences regarding treatment response. Sixty-six antipsychotic-naive first-episode schizophrenia patients and sixty-five healthy controls underwent extensive electrophysiological and neurocognitive test batteries. Patients were assessed on the Positive and Negative Syndrome Scale (PANSS) before and after 6 weeks of monotherapy with the relatively selective D2 receptor antagonist, amisulpride (280.3±159 mg per day). A reduced principal component space based on 19 electrophysiological variables and 26 cognitive variables was used as input for a Gaussian mixture model to identify subgroups of patients. With support vector machines, we explored the relation between PANSS subscores and the identified subgroups. We identified two statistically distinct subgroups of patients. We found no significant baseline psychopathological differences between these subgroups, but the effect of treatment in the groups was predicted with an accuracy of 74.3% (P=0.003). In conclusion, electrophysiology and cognition data may be used to classify subgroups of schizophrenia patients. The two distinct subgroups, which we identified, were psychopathologically inseparable before treatment, yet their response to dopaminergic blockade was predicted with significant accuracy. This proof of principle encourages further endeavors to apply data-driven, multivariate and multimodal models to facilitate progress from symptom-based psychiatry toward individualized treatment regimens.</jats:p

    Distribution and Characterization of Progenitor Cells within the Human Filum Terminale

    Get PDF
    Filum terminale (FT) is a structure that is intimately associated with conus medullaris, the most caudal part of the spinal cord. It is well documented that certain regions of the adult human central nervous system contains undifferentiated, progenitor cells or multipotent precursors. The primary objective of this study was to describe the distribution and progenitor features of this cell population in humans, and to confirm their ability to differentiate within the neuroectodermal lineage.We demonstrate that neural stem/progenitor cells are present in FT obtained from patients treated for tethered cord. When human or rat FT-derived cells were cultured in defined medium, they proliferated and formed neurospheres in 13 out of 21 individuals. Cells expressing Sox2 and Musashi-1 were found to outline the central canal, and also to be distributed in islets throughout the whole FT. Following plating, the cells developed antigen profiles characteristic of astrocytes (GFAP) and neurons (β-III-tubulin). Addition of PDGF-BB directed the cells towards a neuronal fate. Moreover, the cells obtained from young donors shows higher capacity for proliferation and are easier to expand than cells derived from older donors.The identification of bona fide neural progenitor cells in FT suggests a possible role for progenitor cells in this extension of conus medullaris and may provide an additional source of such cells for possible therapeutic purposes. Filum terminale, human, progenitor cells, neuron, astrocytes, spinal cord

    The putative drug efflux systems of the Bacillus cereus group

    Get PDF
    The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70-80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current knowledge of the small molecule efflux pumps encoded by the B. cereus group and suggest the likely functions of numerous uncharacterised pumps

    Association between cerebrospinal fluid biomarkers of neuronal injury or amyloidosis and cognitive decline after major surgery

    Get PDF
    BACKGROUND: Postoperative neurocognitive decline is a frequent complication in adult patients undergoing major surgery with increased risk for morbidity and mortality. The mechanisms behind cognitive decline after anaesthesia and surgery are not known. We studied the association between CSF and blood biomarkers of neuronal injury or brain amyloidosis and long-term changes in neurocognitive function. METHODS: In patients undergoing major orthopaedic surgery (knee or hip replacement), blood and CSF samples were obtained before surgery and then at 4, 8, 24, 32, and 48 h after skin incision through an indwelling spinal catheter. CSF and blood concentrations of total tau (T-tau), neurofilament light, neurone-specific enolase and amyloid β (Aβ1-42) were measured. Neurocognitive function was assessed using the International Study of Postoperative Cognitive Dysfunction (ISPOCD) test battery 1–2 weeks before surgery, at discharge from the hospital (2–5 days after surgery), and at 3 months after surgery. RESULTS: CSF and blood concentrations of T-tau, neurone-specific enolase, and Aβ1-42 increased after surgery. A similar increase in serum neurofilament light was seen with no overall changes in CSF concentrations. There were no differences between patients having a poor or good late postoperative neurocognitive outcome with respect to these biomarkers of neuronal injury and Aβ1-42. CONCLUSIONS: The findings of the present explorative study showed that major orthopaedic surgery causes a release of CSF markers of neural injury and brain amyloidosis, suggesting neuronal damage or stress. We were unable to detect an association between the magnitude of biomarker changes and long-term postoperative neurocognitive dysfunction

    The Huntington's disease mutation impairs Huntingtin's role in the transport of NF-κB from the synapse to the nucleus

    Get PDF
    Expansion of a polyglutamine (polyQ) tract in the Huntingtin (Htt) protein causes Huntington's disease (HD), a fatal inherited neurodegenerative disorder. Loss of the normal function of Htt is thought to be an important pathogenetic component of HD. However, the function of wild-type Htt is not well defined. Htt is thought to be a multifunctional protein that plays distinct roles in several biological processes, including synaptic transmission, intracellular transport and neuronal transcription. Here, we show with biochemical and live cell imaging studies that wild-type Htt stimulates the transport of nuclear factor κ light-chain-enhancer of activated B cells (NF-κB) out of dendritic spines (where NF-κB is activated by excitatory synaptic input) and supports a high level of active NF-κB in neuronal nuclei (where NF-κB stimulates the transcription of target genes). We show that this novel function of Htt is impaired by the polyQ expansion and thus may contribute to the etiology of HD

    Widespread higher fractional anisotropy associates to better cognitive functions in individuals at ultra-high risk for psychosis

    Get PDF
    In schizophrenia patients, cognitive functions appear linked to widespread alterations in cerebral white matter microstructure. Here we examine patterns of associations between regional white matter and cognitive functions in individuals at ultra-high risk for psychosis. One hundred and sixteen individuals at ultra-high risk for psychosis and 49 matched healthy controls underwent 3 T magnetic resonance diffusion-weighted imaging and cognitive assessments. Group differences on fractional anisotropy were tested using tract-based spatial statistics. Group differences in cognitive functions, voxel-wise as well as regional fractional anisotropy were tested using univariate general linear modeling. Multivariate partial least squares correlation analyses tested for associations between patterns of regional fractional anisotropy and cognitive functions. Univariate analyses revealed significant impairments on cognitive functions and lower fractional anisotropy in superior longitudinal fasciculus and cingulate gyrus in individuals at ultra-high risk for psychosis. Partial least squares correlation analysis revealed different associations between patterns of regional fractional anisotropy and cognitive functions in individuals at ultra-high risk for psychosis compared to healthy controls. Widespread higher fractional anisotropy was associated with better cognitive functioning for individuals at ultra-high risk for psychosis, but not for the healthy controls. Furthermore, patterns of cognitive functions were associated with an interaction-effect on regional fractional anisotropy in fornix, medial lemniscus, uncinate fasciculus, and superior cerebellar peduncle. Aberrant associations between patterns of cognitive functions to white matter may be explained by dysmyelination
    corecore