143 research outputs found

    Climate variability of Southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40°S)

    Get PDF
    A key region to study high resolution climate changes of the Southern Hemisphere is undoubtedly the southern part of Chile because it has the advantage to be far removed from the Northern Hemisphere ice sheets and thermohaline circulation influences. In order to reconstruct the regional climate evolution since the Last Glacial Maximum, we investigated the sedimentary infilling of Lago Puyehue (40°S, 164 km2, elevation 185 m) by a multi-proxy analyse of a 11 m long core. Sediments from this core are transported by interflow currents and are made of finely laminated silts, with only small disturbances due to volcanic and seismic activities. Several proxies were measured: grain-size, mineralogy, magnetic susceptibility, major elements geochemistry and biogenic silica concentration. These are used to reconstruct paleo-precipitation and paleo-productivity changes around 40°S. Results evidence that sediment grainsize is highly correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is highly correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition demonstrate that, since the Last Glacial Maximum, the Chilean Lake District was characterized by 3 abrupt climate changes superimposed on a long term climate evolution. These rapid climate changes are: (1) the end of the Last Glacial Maximum at 17,300 cal. yr. BP; (2) a 13,100-12,300 cal. yr. BP cold event, ending rapidly and interpreted as the local counter part of the European Younger Dryas event, and (3) a 3400-2900 cal. yr. BP climatic instability related to low solar activity. The timing of the 13,100-12,300 cold event is compared with similar records in both hemispheres and demonstrates that this Southern Hemisphere climate change lags behind the Northern Hemisphere Younger Dryas cold period by 500 to 1000 years

    KLAIR: A virtual infant for spoken language acquisition research

    Get PDF
    Recent research into the acquisition of spoken language has stressed the importance of learning through embodied linguistic interaction with caregivers rather than through passive observation. However the necessity of interaction makes experimental work into the simulation of infant speech acquisition difficult because of the technical complexity of building real-time embodied systems. In this paper we present KLAIR: a software toolkit for building simulations of spoken language acquisition through interactions with a virtual infant. The main part of KLAIR is a sensori-motor server that supplies a client machine learning application with a virtual infant on screen that can see, hear and speak. By encapsulating the real-time complexities of audio and video processing within a server that will run on a modern PC, we hope that KLAIR will encourage and facilitate more experimental research into spoken language acquisition through interaction. Copyright © 2009 ISCA

    Paleoproductivity of Puyehue Lake (Southern Chile) during the last millenium: climatic significance

    Get PDF
    Southern Chile is a key site for the understanding of past climatic variations since it is influenced by the El Nino Southern Oscillation (ENSO). We investigated high resolution climate changes during the last millennium by a multi-proxy analyse of short cores (60 cm long) collected in Puyehue lake (40°S): magnetic susceptibility, grain-size, mineralogy, density, gamma-density, LOI, biogenic silica content and bulk XRF geochemistry. According to age-depth model (210Pb, 137Cs and varve counting - Boës et al., this session), the cores cover the last 600 yr. The sediment is characterized by volcanic minerals and a high diatom content, due to the important lacustrine silica supply characteristic of volcanic environments. Moreover, the active volcanism of the Chilean Lake District is responsible of a high number of tephra deposits. Our main aim is to quantify biogenic particles fluxes throughout the last millennium by Na2CO3 dissolution and by normative calculation based on bulk XRF analyses. The result shows that volcanic eruptions do not influence the biogenic productivity of the lake. From 1400 to 1880 yr. AD, paleoproductivity shows a global trend from low to high biogenic production. Important paleoproductivity changes are observed over the last 120 yr. Results are compared with historical data and discussed in terms of climate changes and/or anthropic influence

    Geophysical characterization of the sedimentary environments in Lago Puyehue and Lago Icalma (Chilean Lake District, SW Andes)

    Get PDF
    The Chilean Lake District, located in Southern Chile, comprises 17 lakes at the foothill of the Cordillera de los Andes. These lakes, dammed by frontal moraines, were formed during the last deglaciation (12500-12000 BP). Their sedimentary infilling has the potential to contain a complete and continuous Holocene sedimentary record of environmental and climatic changes having affected the area.High-resolution reflection seismic data (sparker and pinger) collected during the 2001-2002 expedition in the framework of the Belgian ENSO-CHILE project have allowed us to select two lakes for the collection of long and short sediment cores:Lago Icalma (38°50’S, alt. 1150 m) is located in the Cordillera de los Andes, in the upper part of the Bio-Bio River. Its watershed (148 km2) is dominated by a soft post-glacial sediment cover, interrupted by two important pumice layers. According to the high-resolution seismic survey, the 70m-thick sedimentary infilling consists of morainic deposits, under- and interflows and laminated lacustrine deposits. The western part of the main basin represents an elevated platform, free of the influence of bottom-currents and turbidites and possibly consisting of interflow deposits. Core descriptions and physical property analyses of sediments (gamma-density, low and high-resolution magnetic susceptibility) suggest that the deposits consist of an alternation of volcanic deposits and terrigenous sediments correlated on pinger profiles, showing the presence of several low-amplitude layers.Lago Puyehue (40°40’S, alt. 185 m) is located at the foothill of the Cordillera de los Andes and presents a glacial morphology much more complicated than Lago Icalma. Its watershed is larger (1267 km2) and dominated by Quaternary and Tertiary volcanic rocks. The lake is composed, in its western part, by a large basin, filled by 250 m of sediments, as can be deduced from sparker profiles. The eastern part of the lake presents a complex substratum morphology. However, it was possible to find a suitable location in underflow and interflow deposit areas for the collection of two long cores. Core description and physical property analyses of sediments of the interflow area suggest a good and continuous sedimentary record.With this contribution, we wish to illustrate the potential of high resolution geophysical site-survey data for interpreting core descriptions and physical property analyses

    Distribution of sedimentary rock types through time in a back-arc basin: A case study from the Jurassic of the Greater Caucasus (Northern Neotethys)

    Get PDF
    Abstract The evolution of sedimentary basins can be explored by analyzing the changes in their lithologies and lithofacies (i.e. predominant lithologies). The Greater Caucasus Basin, which was located at the northern margin of the Neotethys Ocean, represents a complete Sinemurian-Tithonian succession. A quantitative analysis of compiled datasets suggests that principal lithologies and lithofacies are represented by siliciclastics, shale and carbonates. The relative abundance of siliciclastics and shale decreased throughout the Jurassic, whereas that of carbonates increased. Evaporites are known from the Upper Jurassic, while volcaniclastics and volcanics, as well as coals, are known only in the Lower to Middle Jurassic. Siliceous rocks are extremely rare. Lithology and lithofacies proportions change accordingly. The Sinemurian-Bathonian sedimentary complex is siliciclastic-and-shale-dominated, whereas the Callovian-Tithonian sedimentary complex is carbonate-dominated. A major change in the character of sedimentation occurred during the Aalenian-Callovian time interval. Regional transgressions and regressions were more important controls of changes in the sedimentary rock proportions than average basin depth. Landward shoreline shifts were especially favorable for carbonate accumulation, whereas siliciclastics and shale were deposited preferentially in regressive settings. An extended area of the marine basin, its lower average depth, and a sharp bathymetric gradient favored a higher diversity of sedimentation. An orogeny at the Triassic-Jurassic transition was responsible for a large proportion of siliciclastics and extensive conglomerate deposition. An arcarc collision in the Middle Jurassic also enhanced the siliciclastic deposition. Both phases of tectonic activity were linked with an increase in volcanics and volcaniclastics. Volcanism itself might have been an important control on sedimentation. A transition to carbonate-dominated sedimentation occurred in the Late Jurassic, reflecting a tectonically calm period

    Long-Term Survival of Human Neural Stem Cells in the Ischemic Rat Brain upon Transient Immunosuppression

    Get PDF
    Understanding the physiology of human neural stem cells (hNSCs) in the context of cell therapy for neurodegenerative disorders is of paramount importance, yet large-scale studies are hampered by the slow-expansion rate of these cells. To overcome this issue, we previously established immortal, non-transformed, telencephalic-diencephalic hNSCs (IhNSCs) from the fetal brain. Here, we investigated the fate of these IhNSC's immediate progeny (i.e. neural progenitors; IhNSC-Ps) upon unilateral implantation into the corpus callosum or the hippocampal fissure of adult rat brain, 3 days after global ischemic injury. One month after grafting, approximately one fifth of the IhNSC-Ps had survived and migrated through the corpus callosum, into the cortex or throughout the dentate gyrus of the hippocampus. By the fourth month, they had reached the ipsilateral subventricular zone, CA1-3 hippocampal layers and the controlateral hemisphere. Notably, these results could be accomplished using transient immunosuppression, i.e administering cyclosporine for 15 days following the ischemic event. Furthermore, a concomitant reduction of reactive microglia (Iba1+ cells) and of glial, GFAP+ cells was also observed in the ipsilateral hemisphere as compared to the controlateral one. IhNSC-Ps were not tumorigenic and, upon in vivo engraftment, underwent differentiation into GFAP+ astrocytes, and β-tubulinIII+ or MAP2+ neurons, which displayed GABAergic and GLUTAmatergic markers. Electron microscopy analysis pointed to the formation of mature synaptic contacts between host and donor-derived neurons, showing the full maturation of the IhNSC-P-derived neurons and their likely functional integration into the host tissue. Thus, IhNSC-Ps possess long-term survival and engraftment capacity upon transplantation into the globally injured ischemic brain, into which they can integrate and mature into neurons, even under mild, transient immunosuppressive conditions. Most notably, transplanted IhNSC-P can significantly dampen the inflammatory response in the lesioned host brain. This work further supports hNSCs as a reliable and safe source of cells for transplantation therapy in neurodegenerative disorders

    Climate variability of southern Chile since the Last Glacial Maximum : a continuous sedimentological record from Lago Puyehue (40°S)

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Paleolimnology 39 (2008): 179-195, doi:10.1007/s10933-007-9117-y.This paper presents a multi-proxy climate record of an 11 m long core collected in Lago Puyehue (southern Chile, 40°S) and extending back to 18,000 cal yr BP. The multi-proxy analyses include sedimentology, mineralogy, grain size, geochemistry, loss-on-ignition, magnetic susceptibility and radiocarbon datings. Results demonstrate that sediment grain size is positively correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition evidence that, since the last glacial maximum, the Chilean Lake District was characterized by 3 abrupt climate changes superimposed on a long-term climate evolution. These rapid climate changes are: (1) an abrupt warming at the end of the last glacial maximum at 17,300 cal yr BP; (2) a 13,100-12,300 cal yr BP cold event, ending rapidly and interpreted as the local counter part of the Younger Dryas cold period, and (3) a 3400-2900 cal yr BP climatic instability synchronous with a period of low solar activity. The timing of the 13,100-12,300 cold event is compared with similar records in both hemispheres and demonstrates that this southern hemisphere climate change lags behind the northern hemisphere Younger Dryas cold period by 500 to 1000 years.This research is supported by the Belgian OSTC project EV/12/10B "A continuous Holocene record of ENSO variability in southern Chile"

    Rapid switches in subpolar North Atlantic hydrography and climate during the Last Interglacial (MIS 5e)

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA2207, doi:10.1029/2011PA002244.At the peak of the previous interglacial period, North Atlantic and subpolar climate shared many features in common with projections of our future climate, including warmer-than-present conditions and a diminished Greenland Ice Sheet (GIS). Here we portray changes in North Atlantic hydrography linked with Greenland climate during Marine Isotope Stage (MIS) 5e using (sub)centennially sampled records of planktonic foraminiferal isotopes and assemblage counts and ice-rafted debris counts, as well as modern analog technique and Mg/Ca-based paleothermometry. We use the core MD03-2664 recovered from a high accumulation rate site (∼34 cm/kyr) on the Eirik sediment drift (57°26.34′N, 48°36.35′W). The results indicate that surface waters off southern Greenland were ∼3–5°C warmer than today during early MIS 5e. These anomalously warm sea surface temperatures (SSTs) prevailed until the isotopic peak of MIS 5e when they were interrupted by a cooling event beginning at ∼126 kyr BP. This interglacial cooling event is followed by a gradual warming with SSTs subsequently plateauing just below early MIS 5e values. A planktonic δ18O minimum during the cooling event indicates that marked freshening of the surface waters accompanied the cooling. We suggest that switches in the subpolar gyre hydrography occurred during a warmer climate, involving regional changes in freshwater fluxes/balance and East Greenland Current influence in the study area. The nature of these hydrographic transitions suggests that they are most likely related to large-scale circulation dynamics, potentially amplified by GIS meltwater influences.This work is a contribution of the European Science Foundation EuroMARC program, through the AMOCINT project, funded through grants from the Research Council of Norway (RCN) and contributes to EU-FP7 IP Past4Future. N. Irvalı was additionally funded by an ESF EUROCORES Short-term Visit grant and a RCN Leiv Eiriksson mobility grant to support research stays at the University of Edinburgh, UK, and Woods Hole Oceanographic Institution, USA, respectively, during which parts of the data for this paper were acquired. U. Ninnemann was funded by a University of Bergen Meltzer research grant.2012-11-1
    • …
    corecore