25 research outputs found
Evolution of community structure in the system of global environmental governance
2011 Spring.Includes bibliographical references.Self-organization can arise in systems where actors interact in non-trivial ways and adapt their rule-sets in response to their environment. In the global system of environmental governance (GSEG), countries that interact frequently develop cultures of practice and aggregate into larger structures or communities. Network analysis provides a powerful set of tools to describe the evolution and composition of observed communities. Methods developed for bipartite networks are used to consider the behavior of countries and agreements simultaneously in the years between 1950 and 2000. Specifically, the BRIM algorithm, a bipartite adaptation of Newman's eigenvector method of community discovery, is implemented to identify the borders of densely connected international environmental communities. Our analysis of community structure provides a more precise quantification of the evolution of the international environmental system of governance noted by regime theorists
An Interactive, Mobile-Based Tool for Personal Social Network Data Collection and Visualization Among a Geographically Isolated and Socioeconomically Disadvantaged Population: Early-Stage Feasibility Study with Qualitative User Feedback
Background: Personal social networks have a profound impact on our health, yet collecting personal network data for use in health communication, behavior change, or translation and dissemination interventions has proved challenging. Recent advances in social network data collection software have reduced the burden of network studies on researchers and respondents alike, yet little testing has occurred to discover whether these methods are: (1) acceptable to a variety of target populations, including those who may have limited experience with technology or limited literacy; and (2) practical in the field, specifically in areas that are geographically and technologically disconnected, such as rural Appalachian Kentucky.
Objective: We explored the early-stage feasibility (Acceptability, Demand, Implementation, and Practicality) of using innovative, interactive, tablet-based network data collection and visualization software (OpenEddi) in field collection of personal network data in Appalachian Kentucky.
Methods: A total of 168 rural Appalachian women who had previously participated in a study on the use of a self-collected vaginal swab (SCVS) for human papillomavirus testing were recruited by community-based nurse interviewers between September 2013 and August 2014. Participants completed egocentric network surveys via OpenEddi, which captured social and communication network influences on participation in, and recruitment to, the SCVS study. After study completion, we conducted a qualitative group interview with four nurse interviewers and two participants in the network study. Using this qualitative data, and quantitative data from the network study, we applied guidelines from Bowen et al to assess feasibility in four areas of early-stage development of OpenEddi: Acceptability, Demand, Implementation, and Practicality. Basic descriptive network statistics (size, edges, density) were analyzed using RStudio.
Results: OpenEddi was perceived as fun, novel, and superior to other data collection methods or tools. Respondents enjoyed the social network survey component, and visualizing social networks produced thoughtful responses from participants about leveraging or changing network content and structure for specific health-promoting purposes. Areas for improved literacy and functionality of the tool were identified. However, technical issues led to substantial (50%) data loss, limiting the success of its implementation from a researcher\u27s perspective, and hindering practicality in the field.
Conclusions: OpenEddi is a promising data collection tool for use in geographically isolated and socioeconomically disadvantaged populations. Future development will mitigate technical problems, improve usability and literacy, and test new methods of data collection. These changes will support goals for use of this tool in the delivery of network-based health communication and social support interventions to socioeconomically disadvantaged populations
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio
TRY plant trait database â enhanced coverage and open access
Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of traitâbased plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for âplant growth formâ. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and traitâenvironmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
DATA AND MATERIALS AVAILABILITY : The full dataset used in the final analyses (33) and associated code (34) are available at Dryad. A subset of the spatial coordinate datasets is available at Zenodo (35). Certain datasets of spatial coordinates will be available only through requests made to the authors due to conservation and Indigenous sovereignty concerns (see table S1 for more information on data use restrictions and contact information for data requests). These sensitive data will be made available upon request to qualified researchers for research purposes, provided that the data use will not threaten the study populations, such as by distribution or publication of the coordinates or detailed maps. Some datasets, such as those overseen by government agencies, have additional legal restrictions on data sharing, and researchers may need to formally apply for data access. Collaborations with data holders are generally encouraged, and in cases where data are held by Indigenous groups or institutions from regions that are under-represented in the global science community, collaboration may be required to ensure inclusion.COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animalsâ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.The Radboud Excellence Initiative, the German Federal Ministry of Education and Research, the National Science Foundation, Serbian Ministry of Education, Science and Technological Development, Dutch Research Council NWO program âAdvanced Instrumentation for Wildlife Protectionâ, Fondation SegrĂ©, RZSS, IPE, Greensboro Science Center, Houston Zoo, Jacksonville Zoo and Gardens, Nashville Zoo, Naples Zoo, Reid Park Zoo, Miller Park, WWF, ZCOG, Zoo Miami, Zoo Miami Foundation, Beauval Nature, Greenville Zoo, Riverbanks zoo and garden, SAC Zoo, La Passarelle Conservation, Parc Animalier dâAuvergne, Disney Conservation Fund, Fresno Chaffee zoo, Play for nature, North Florida Wildlife Center, Abilene Zoo, a Liber Ero Fellowship, the Fish and Wildlife Compensation Program, Habitat Conservation Trust Foundation, Teck Coal, and the Grand Teton Association. The collection of Norwegian moose data was funded by the Norwegian Environment Agency, the German Ministry of Education and Research via the SPACES II project ORYCS, the Wyoming Game and Fish Department, Wyoming Game and Fish Commission, Bureau of Land Management, Muley Fanatic Foundation (including Southwest, Kemmerer, Upper Green, and Blue Ridge Chapters), Boone and Crockett Club, Wyoming Wildlife and Natural Resources Trust, Knobloch Family Foundation, Wyoming Animal Damage Management Board, Wyoming Governorâs Big Game License Coalition, Bowhunters of Wyoming, Wyoming Outfitters and Guides Association, Pope and Young Club, US Forest Service, US Fish and Wildlife Service, the Rocky Mountain Elk Foundation, Wyoming Wild Sheep Foundation, Wild Sheep Foundation, Wyoming Wildlife/Livestock Disease Research Partnership, the US National Science Foundation [IOS-1656642 and IOS-1656527, the Spanish Ministry of Economy, Industry and Competitiveness, and by a GRUPIN research grant from the Regional Government of Asturias, Sigrid Rausing Trust, Batubay Ăzkan, Barbara Watkins, NSERC Discovery Grant, the Federal Aid in Wildlife Restoration act under Pittman-Robertson project, the State University of New York, College of Environmental Science and Forestry, the Ministry of Education, Youth and Sport of the Czech Republic, the Ministry of Agriculture of the Czech Republic, Rufford Foundation, an American Society of Mammalogists African Graduate Student Research Fund, the German Science Foundation, the Israeli Science Foundation, the BSF-NSF, the Ministry of Agriculture, Forestry and Food and Slovenian Research Agency (CRP V1-1626), the Aage V. Jensen Naturfond (project: Kronvildt - viden, vĂŠrdier og vĂŠrktĂžjer), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanyâs Excellence Strategy, National Centre for Research and Development in Poland, the Slovenian Research Agency, the David Shepherd Wildlife Foundation, Disney Conservation Fund, Whitley Fund for Nature, Acton Family Giving, Zoo Basel, Columbus, Bioparc de DouĂ©-la-Fontaine, Zoo Dresden, Zoo Idaho, KolmĂ„rden Zoo, Korkeasaari Zoo, La Passarelle, Zoo New England, Tierpark Berlin, Tulsa Zoo, the Ministry of Environment and Tourism, Government of Mongolia, the Mongolian Academy of Sciences, the Federal Aid in Wildlife Restoration act and the Illinois Department of Natural Resources, the National Science Foundation, Parks Canada, Natural Sciences and Engineering Research Council, Alberta Environment and Parks, Rocky Mountain Elk Foundation, Safari Club International and Alberta Conservation Association, the Consejo Nacional de Ciencias y TecnologĂa (CONACYT) of Paraguay, the Norwegian Environment Agency and the Swedish Environmental Protection Agency, EU funded Interreg SI-HR 410 Carnivora Dinarica project, Paklenica and Plitvice Lakes National Parks, UK Wolf Conservation Trust, EURONATUR and Bernd Thies Foundation, the Messerli Foundation in Switzerland and WWF Germany, the European Unionâs Horizon 2020 research and innovation program under the Marie SkĆodowska-Curie Actions, NASA Ecological Forecasting Program, the Ecotone Telemetry company, the French National Research Agency, LANDTHIRST, grant REPOS awarded by the i-Site MUSE thanks to the âInvestissements dâavenirâ program, the ANR Mov-It project, the USDA Hatch Act Formula Funding, the Fondation Segre and North American and European Zoos listed at http://www.giantanteater.org/, the Utah Division of Wildlife Resources, the Yellowstone Forever and the National Park Service, Missouri Department of Conservation, Federal Aid in Wildlife Restoration Grant, and State University of New York, various donors to the Botswana Predator Conservation Program, data from collared caribou in the Northwest Territories were made available through funds from the Department of Environment and Natural Resources, Government of the Northwest Territories. The European Research Council Horizon2020, the British Ecological Society, the Paul Jones Family Trust, and the Lord Kelvin Adam Smith fund, the Tanzania Wildlife Research Institute and Tanzania National Parks. The Eastern Shoshone and Northern Arapahoe Fish and Game Department and the Wyoming State Veterinary Laboratory, the Alaska Department of Fish and Game, Kodiak Brown Bear Trust, Rocky Mountain Elk Foundation, Koniag Native Corporation, Old Harbor Native Corporation, Afognak Native Corporation, Ouzinkie Native Corporation, Natives of Kodiak Native Corporation and the State University of New York, College of Environmental Science and Forestry, and the Slovenia Hunters Association and Slovenia Forest Service. F.C. was partly supported by the Resident Visiting Researcher Fellowship, IMĂ©RA/Aix-Marseille UniversitĂ©, Marseille. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germanyâs Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament. This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society.https://www.science.org/journal/sciencehj2023Mammal Research InstituteZoology and Entomolog
Homeowner's Guide to Eco-Friendly Lawncare
A video series on techniques for reducing the amount of pesticides and fertilizers applied to the home-lawnSpring 201
Turnover During a Corporate Merger: How Workplace Network Change Influences Staying.
The upheaval created by a merger can precipitate voluntary employee turnover, causing merging organizations to lose valuable knowledge-based resources and competencies precisely when they are needed most to achieve the merger\u27s integration goals. While prior research has shown that employees\u27 connections to coworkers reduce their likelihood of leaving, we know little about how personal social networks should change to increase the likelihood of staying through the disruptive post-merger integration period. In a pre-post study of social network change, we investigate over 15 million email communications between employees within two large merging consumer goods firms over 2 years. We use insights from network activation theory to posit and find that employees with high formal power (rank) and high informal status (indegree centrality) react to the merger\u27s general uncertainty and threat by developing new social connections in a manner indicative of a network widening response: reaching out and connecting with those in the counterpart legacy organization. We also investigate whether increased personally felt threat in the form of merger-related job insecurity strengthens these relationships, finding it does in the case of high formal power. We also find that employees increasing their cross-legacy social connections is key in reducing those employees\u27 turnover after a merger. Our study suggests that network activation theory can be extended to explain network changes and not simply network cognition. (PsycInfo Database Record (c) 2021 APA, all rights reserved)
Recommended from our members
The hidden value of trees: Quantifying the ecosystem services of tree lineages and their major threats across the contiguous US
Trees provide critical contributions to human well-being. They sequester and store greenhouse gasses, filter air pollutants, provide wood, food, and other products, among other benefits. These benefits are threatened by climate change, fires, pests and pathogens. To quantify the current value of the flow of ecosystem services from U.S. trees, and the threats they face, we combine macroevolutionary and economic valuation approaches using spatially explicit data about tree species and lineages. We find that the value of five key ecosystem services with adequate data generated by US trees is 85 B; high: $137 B; 2010 USD). The non-market value of trees from carbon storage and air pollution removal far exceed their commercial value from wood products and food crops. Two lineagesâpines and oaksâaccount for 42% of the value of these services. The majority of species face threats from climate change, many face increasing fire risk, and known pests and pathogens threaten 40% of total woody biomass. The most valuable US tree species and lineages are among those most threatened by known pests and pathogens, with species most valuable for carbon storage most at risk from increasing fire threat. High turnover of tree species across the continent results in a diverse set of species distributed across the tree of life contributing to ecosystem services in the U.S. The high diversity of taxa across U.S. forests may be important in buffering ecosystem service losses if and when the most valuable lineages are compromised