6 research outputs found

    The study of polymer material characterisation using M-Z-N statistical analysis method

    Get PDF
    This paper proposes an implementation of alternative statistical signal analysis method in characterising material properties of polymer using impulse excitation technique (IET) in accordance with ASTM E1876 standard. Five types of cylindrical shape polymer specimens are used, namely acrylics (AC), poly vinyl chloride (PVC), polyethylene (PE), cast nylon (MC), and polyoxymethylene (POM). Experimental procedure is done based on non-destructive testing (NDT) concept by tapping the specimens using an impact hammer within a specific range of impact force, while accelerometer sensor Endevco 751-100 is used to detect the vibration produced. The detected vibration and the impact force signal which is triggered by impact hammer are captured using NI 9234 data acquisition device and computer. The signal is interpreted and statistically analysed using Mesokurtosis Zonal Non-parametric (M-Z-N) analysis method. As a result, mathematical model equations for determining two material properties which are tensile strength and thermal conductivity have been successfully developed. They are derived through correlation between the signal data and M-Z-N coefficient. Verification of the equation is done and the calculated errors to be in the range of 5.55% to 9.74%. Hence, this proves that the correlation can be used as a standard for determining these material properties through M-Z-N method, which is efficient and low cost

    An Investigation On Light Structure Modal Parameter By Using Experimental Modal Analysis Method Via Piezofilm Sensor

    Get PDF
    This study is conducted to determine the modal parameters namely natural frequencies and mode shapes of aluminum 6061 (Al6061). The parameters are done by conducting a free dynamic vibration analysis. Modal analysis study was conducted by both simulation and experimental approaches. The simulation was conducted via ANSYS software while the experimental work was performed through impact hammer testing to determine the vibration parameter. Two sensors i.e. piezoelectric film and accelerometer were used. The result obtained were ya = 302.02x – 52.51 (accelerometer) and yp = 295.78x - 41.73 (piezofilm). ya (accelerometer) and yp (piezofilm) is linear equation of the data plotted according to the reading from mode shape versus natural frequency. The relation between natural frequency from accelerometer and piezofilm for the rectangular-shaped specimen was ya = 1.02yp – 9.90 and can be concluded that the regression ratio of 1.02 was approximately 1.0 which agreed with the status of piezoelectric film sensor that can be used as an alternative sensor for accelerometer. There was a good results agreement between simulation and experimental work outcome

    Development Of Polymer Mechanical Properties Characteristics Using I-KAZ 4D Analysis Method.

    Get PDF
    This study was undertaken to develop an alternative method based on signal analysis known as I-kaz 4D or I-kaz 4 channels.The aim was to characterize several mechanical properties including Poisson Ratio (PR), Vickers Hardness (VH),Yield Strength (YS),Tensile Strength (TS),Compression Strength (CS) and Fatigue Strength (FS).Specimens used are Polyoxymethylene (POM), Polyvinylchloride (PVC) and Blue Nylon MC (MC Blue).Round bar shape specimens were impacted by steel ball from different heights,20 cm to 40 cm.This test was conducted at semi-anechoic room and follow ASTM E1876 standard accordingly.4 accelerometer sensors were placed on the specimen surface to capture vibration signal produced by ball impact.Transient signals which generated from ball impact were analysed using Matlab software based on mathematical model I-kaz 4D.As a result,a correlation was found between I-kaz linear coefficient and material mechanical properties.However the errors are within acceptable range for all specimens used.It was found that average errors for Poisson Ratio = 0.69%,Vickers Hardness = 2.12%, Yield Strength = 3.20%,Tensile Strength = 2.43%, Compression Strength = 2.75% and Fatigue Strength =2.02%. It has potentiality to be used for further analysis of the respective materials

    Novel Technique Of Modal Analysis For Light Structure Via Piezofilm Sensor: A Comparison Study

    Get PDF
    This study is conducted to determine the modal parameters namely natural frequencies and mode shapes of aluminum 6061 (Al6061). A light and small structure made from Al6061 is chosen as the experimental specimen mainly because of its wide application in industries such as automotive parts or accessories and robotic, mainly in manufacturing of automobile frames. If a component vibrates with a frequency that is coherent with the component’s natural frequency, resonance frequency will occur and structural failure might emerge. Two sensors i.e. piezoelectric film and accelerometer were used. The result obtained were ya = 329.60x – 142.27 (accelerometer) and yp = 304.98x + 15.18 (piezofilm). The relation between natural frequency of accelerometer and piezofilm for the triangle-shape specimen was ya = 1.08yp – 158.67 and can be concluded that the regression ratio of 1.08 was approximately 1.0 which agreed with the status of piezoelectric film sensor that can be used as an alternative sensor for accelerometer. There was a good results agreement between simulation and experimental work outcome

    An Investigation Of Modal Analysis For Al6061 Between Piezoelectric Film Sensor And Accelerometer

    Get PDF
    An experiment was conducted to determine modal parameters such as natural frequencies and mode shapes of aluminum 6061 (Al6061). A free dynamic vibration analysis was conducted to obtain the parameters. Al6061 was chosen as the experiment component mainly because of its wide application in automotive industries. Theoretically, if the component vibrates and produce frequency coherence with the natural frequency, resonance frequency will occur which can lead to structural failure. Modal analysis study was conducted by using both simulation and experimental method to compare their outcome. Simulation was conducted via ANSYS software while impact hammer testing was done for experimental work to determine the vibration parameter. Piezoelectric film and accelerometer were used as the sensor. The result obtained from simulation showed that frequencies for mode shape 1, 2 and 3 for circle shape were 134.60Hz, 324.73Hz and 727.52Hz. The result obtained from accelerometer showed that frequencies for mode shape 1, 2 and 3 for circle shape were 158.67Hz, 421.33Hz and 625.00Hz. Finally, the result captured from piezoelectric film sensor appeared that frequencies for mode shape 1, 2 and 3 for circle shape were 141.00Hz, 321.00Hz and 504.33Hz. There was a good results agreement between simulation and experimental work outcome

    Novel Technique Of Modal Analysis On Small Structure Using Piezoelectric Film Sensor And Accelerometer

    Get PDF
    Modal Analysis is a common practice to define parameters of structure under scientific view. Experimental Modal Analysis (EMA) is a well-known procedure to determine modal parameters. The usage of piezoelectric film sensor as viable and cost-saving device is indeed a need in this advance and sophisticated era. An experiment is conducted to determine modal parameters of aluminum 6061 (Al6061). Here, a free dynamic vibration analysis is conducted to obtain the parameters. Al6061 is chosen as the experiment component because of its wide application in manufacturing industries. Theoretically, if the component vibrates and produce frequency coherence with the natural frequency, resonance frequency will occur which can lead to structural failure. Modal analysis study is conducted by using both simulation and experimental methods. Simulation is conducted via ANSYS software while impact hammer testing is done for experimental work. Piezoelectric film and accelerometer are used as the sensor. The result obtained from simulation showed that frequencies for mode shape 1, 2 and 3 for square shape are 191.89Hz, 542.34Hz and 766.18Hz. The result gained from accelerometer showed that frequencies for mode shape 1, 2 and 3 for square shape are 195.00Hz, 557.00Hz and 865.00Hz. The result captured from piezoelectric film sensor appeared that frequencies for mode shape 1, 2 and 3 for square shape are 205.33Hz, 609.33Hz and 904.33Hz. The result obtained from simulation showed that frequencies for mode shape 1, 2 and 3 for circle shape were 134.60Hz, 324.73Hz and 727.52Hz. The result obtained from accelerometer showed that frequencies for mode shape 1, 2 and 3 for circle shape were 158.67Hz, 421.33Hz and 625.00Hz. Finally, the result captured from piezoelectric film sensor appeared that frequencies for mode shape 1, 2 and 3 for circle shape were 141.00Hz, 321.00Hz and 504.33Hz respectively. The equation of gradient for accelerometer and piezofilm is ya = 316.42x - 104.13 and yp = 309.63x - 43.20 respectively. Therefore, the relationship between the natural frequency of accelerometer and piezofilm for the square-shaped specimen is ya = 1.02yp - 59.98. The equation of gradient for accelerometer and piezofilm is ya = 270.55x - 134.82 and yp = 280.89x - 215.04 respectively. Therefore, the relation between the natural frequency of accelerometer and piezofilm for the circle-shaped specimen is ya = 0.96yp + 72.3. Both result showed the regression ratio of 1.02 and 0.96 which is approximately 1.0 and there was a good results agreement between simulation and experimental outcome
    corecore