45 research outputs found

    A new stilbene from Agonis flexuosa leaves and verification of its histamine release inhibitory activity using in silico and in vitro studies

    Get PDF
    This study aimed to explore the phytoconstituents of Agonis flexuosa, F. Myrtaceae and its biological activity. A thorough phytochemical investigation of its leaves led to the isolation of one new stilbene glycoside; (Z)-2,3-dihydroxystilbene-5-O-β-D-glucoside (1), and fifteen known compounds identified as two stilbenes: (Z)-pinosylvin mono methyl ether (2) and (Z)-pinosylvin-3-O-β-D-glucoside (3); six flavanones: (2S)-pinostrobin (4), (2S)-strobopinin (5), (2S)-cryptostobin (6), (2S)-pinocembrin (7), (2S)-dimethylpinocembrin (8) and (2S)-dimethylstrobopinin (9); four flavonoids: quercetin (10), kaempferol-7-O-β-D-glucoside (11), quercetin-3-O-α-D-rhamnoside (12) and quercetin-3-O-β-D-glucoside (13), α-terpineol (14), β-sitosterol (15) and gallic acid (16). The structures of the isolated metabolites were elucidated based upon the interpretation of their 1D and 2D NMR (One Dimensional and Two-Dimensional Nuclear Magnetic Resonance), HR-ESI-MS (High Resolution Electrospray Ionization Mass Spectrometry) and optical rotation. All the isolated compounds were evaluated for their antimicrobial activities. Only compound (6) showed a selective activity against P. aeruginosa with IC50 value of 4.88 µM. In silico virtual screening was done for the isolated compounds on Human histamine H1 receptor (3RZE) downloaded from protein data bank. All the compounds showed certain degree of binding to the protein displaying free binding energies ranging between -11 to -31 kcal/mol. (Z)-2,3-Dihydroxystilbene-5-O-β-D-glucoside (1) showed notable fitting to the active site as evidenced by its free binding energy (∆G) which is computed as -25.09 kcal/mol comparable to diclofenac that displayed (∆G) of -15.00 kcal/mol. In vitro assessment of histamine release inhibitory activity was performed using U937 human monocytes. Compound (1) showed a substantial inhibition to histamine release displaying IC50 value of 0.16 μM

    Syzygium aqueum: A polyphenol- rich leaf extract exhibits antioxidant, hepatoprotective, pain-killing and anti-inflammatory activities in animal models

    Get PDF
    Syzygium aqueum is widely used in folk medicine. A polyphenol-rich extract from its leaves demonstrated a plethora of substantial pharmacological properties. The extract showed solid antioxidant properties in vitro and protected human keratinocytes (HaCaT cells) against UVA damage. The extract also reduced the elevated levels of ALT, AST, total bilirubin (TB), total cholesterol (TC) and triglycerides (TG) in rats with acute CCl4 intoxication. In addition to reducing the high MDA level, the extract noticeably restored GSH and SOD to the normal control levels in liver tissue homogenates and counteracted the deleterious histopathologic changes in liver after CCl4 injection. Additionally, the extract exhibited promising anti-inflammatory activities in vitro where it inhibited LOX, COX-1, and COX-2 with a higher COX-2 selectivity than that of indomethacin and diclofenac and reduced the extent of lysis of erythrocytes upon incubation with hypotonic buffer solution. S. aqueum extract also markedly reduced leukocyte numbers with similar activities to diclofenac in rats challenged with carrageenan. Additionally, administration of the extract abolished writhes induced by acetic acid in mice and prolonged the response latency in hot plate test. Meanwhile, the identified polyphenolics from the extract showed a certain affinity for the active pockets of 5-lipoxygenase (5-LOX), cyclooxygenase-1 (COX-1) and cyclooxygenase- 2 (COX-2) explaining the observed anti-inflammatory activities. Finally, 87 secondary metabolites (mostly phenolics) were tentatively identified in the extract based on LCMS/ MS analyses. Syzygium aqueum displays good protection against oxidative stress, free radicals, and could be a good candidate for treating oxidative stress related diseases

    Comprehensive Overview on the Chemistry and Biological Activities of Selected Alkaloid Producing Marine-Derived Fungi as a Valuable Reservoir of Drug Entities

    No full text
    Marine-associated fungal strains act as a valuable reservoir of bioactive diverse secondary metabolites including alkaloids which are highly popular by their biological activities. This review highlighted the chemistry and biology of alkaloids isolated from twenty-six fungal genera associated with marine organisms and marine sea sediments. The selected fungi are from different marine sources without focusing on mangroves. The studied fungal genera comprises Acrostalagmus, Arthrinium, Chaetomium, Cladosporium, Coniothyrium, Curvularia, Dichotomomyces, Eurotium, Eutypella, Exophiala, Fusarium, Hypocrea, Microsphaeropsis, Microsporum, Neosartorya, Nigrospora, Paecilomyces, Penicillium, Pleosporales, Pseudallescheria, Scedosporium, Scopulariopsis, Stagonosporopsis, Thielavia, Westerdykella, and Xylariaceae. Around 347 alkaloid metabolites were isolated and identified via chromatographic and spectroscopic techniques comprising 1D and 2D NMR (one and two dimensional nuclear magnetic resonance) which were further confirmed using HR-MS (high resolution mass spectrometry) and Mosher reactions for additional ascertaining of the stereochemistry. About 150 alkaloids showed considerable effect with respect to the tested activities. Most of the reported bioactive alkaloids showed considerable biological activities mainly cytotoxic followed by antibacterial, antifungal, antiviral, antioxidant; however, a few showed anti-inflammatory and antifouling activities. However, the rest of the compounds showed weak or no activity toward the tested biological activities and required further investigations for additional biological activities. Thus, alkaloids isolated from marine-associated fungi can afford an endless source of new drug entities that could serve as leads for drug discovery combating many human ailments

    Chemical Profiling and Discrimination of Essential Oils from Six Ferula Species Using GC Analyses Coupled with Chemometrics and Evaluation of Their Antioxidant and Enzyme Inhibitory Potential

    No full text
    The differences in the composition of essential oils obtained from the aerial parts of six Ferula species viz., F. caratavica (Fc), F. kuchistanica (Fk), F. pseudoreoselinum (Fp), F. samarcandica (Fs), F. tenuisecta (Ft) and F. varia (Fv) were detected both qualitatively and semi-quantitatively using GC-MS and GC-FID analyses. One hundred and six metabolites were identified that account for 92.1, 96.43, 87.43, 95.95, 92.90 and 89.48% of Fc, Fk, Fp, Fs, Ft and Fv whole essential oils, respectively. The data from the GC-MS analyses were subjected to unsupervised pattern recognition chemometric analysis utilizing principal component analysis (PCA) to improve the visualization of such differences among the six species. Fk and Ft are very closely related to each other and were gathered together in one cluster. The antioxidant potential was assessed in vitro using different assays including 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing power (FRAP) and phosphomolybdenum (PM) assays. Ft and Fp exhibited the most notable antioxidant properties as evidenced by their pronounced activities in most of the antioxidant assays performed, followed by Fc. Fk showed the most effective tyrosinase inhibitory potential, which was estimated as 119.67 mgKAE/g oil, while Fp exhibited the most potent α-amylase inhibitory potential, which was equivalent to 2.61 mmol ACAE/g oil. Thus, it was concluded that Ferula species could serve as a promising natural antioxidant drug that could be included in different products and spices to alleviate hyperglycemia and used as a natural ingredient in pharmaceutical cosmetics to counteract hyperpigmentation

    Metabolic Profiling of Buddleia indica Leaves using LC/MS and Evidence of their Antioxidant and Hepatoprotective Activity Using Different In Vitro and In Vivo Experimental Models

    No full text
    LC-ESI-MS (Liquid Chromatography coupled with Electrospray Ionization Mass Spectrometry profiling of a methanol extract from Buddleia indica (BIM) leaves revealed 12 main peaks in which verbascoside and buddlenoid B represent the major compounds. The antioxidant and hepatoprotective activities of BIM were investigated using different in vitro and in vivo experimental models. BIM exhibited substantial in vitro antioxidant properties in DPPH· and HepG2 assays. Regarding CCl4 (carbon tetrachloride) induced hepatotoxicity in a rat model, oxidative stress markers became significantly ameliorated after oral administration of BIM. Lipid peroxide levels showed a 51.85% decline relative to CCl4-treated rats. Super oxide dismutase (SOD), total antioxidant status (TAS), and catalase (CAT) revealed a marked increase by 132.48%, 187.18%, and 114.94% relative to the CCl4 group. In a tamoxifen-induced hepatotoxicity model, BIM showed a considerable alleviation in liver stress markers manifested by a 46.06% and 40% decline in ALT (Alanine Transaminase) and AST (Aspartate Transaminase) respectively. Thiobarbituric acid reactive substances (TBARS) were reduced by 28.57% and the tumor necrosis factor alpha (TNF-α) level by 50%. A virtual screening of major secondary metabolites of BIM to TNF-alpha employing the C-docker protocol showed that gmelinoside H caused the most potent TNF- α inhibition as indicated from their high fitting scores. Thus, BIM exhibited a potent hepatoprotective activity owing to its richness in antioxidant metabolites

    Comprehensive overview on the chemistry and biological activities of selected alkaloid producing marine-derived fungi as a valuable reservoir of drug entities

    Get PDF
    Marine-associated fungal strains act as a valuable reservoir of bioactive diverse secondary metabolites including alkaloids which are highly popular by their biological activities. This review highlighted the chemistry and biology of alkaloids isolated from twenty-six fungal genera associated with marine organisms and marine sea sediments. The selected fungi are from different marine sources without focusing on mangroves. The studied fungal genera comprises Acrostalagmus, Arthrinium, Chaetomium, Cladosporium, Coniothyrium, Curvularia, Dichotomomyces, Eurotium, Eutypella, Exophiala, Fusarium, Hypocrea, Microsphaeropsis, Microsporum, Neosartorya, Nigrospora, Paecilomyces, Penicillium, Pleosporales, Pseudallescheria, Scedosporium, Scopulariopsis, Stagonosporopsis, Thielavia, Westerdykella, and Xylariaceae. Around 347 alkaloid metabolites were isolated and identified via chromatographic and spectroscopic techniques comprising 1D and 2D NMR (one and two dimensional nuclear magnetic resonance) which were further confirmed using HR-MS (high resolution mass spectrometry) and Mosher reactions for additional ascertaining of the stereochemistry. About 150 alkaloids showed considerable effect with respect to the tested activities. Most of the reported bioactive alkaloids showed considerable biological activities mainly cytotoxic followed by antibacterial, antifungal, antiviral, antioxidant; however, a few showed anti-inflammatory and antifouling activities. However, the rest of the compounds showed weak or no activity toward the tested biological activities and required further investigations for additional biological activities. Thus, alkaloids isolated from marine-associated fungi can afford an endless source of new drug entities that could serve as leads for drug discovery combating many human ailments

    An Updated Review on the Secondary Metabolites and Biological Activities of Aspergillus ruber and Aspergillus flavus and Exploring the Cytotoxic Potential of Their Isolated Compounds Using Virtual Screening

    No full text
    The secondary metabolites and biological activities of Aspergillus ruber and Aspergillus flavus were comprehensively reported. About 70 compounds were isolated from both species that belong to different classes using conventional and advanced chromatographic techniques and unambiguously elucidated employing one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) and high resolution mass spectrometry (HRMS). Some of them displayed promising antiviral, anti-inflammatory, and antioxidant activities. In silico studies were conducted on human cyclin-dependent kinase 2 (CDK-2), human DNA topoisomerase II (TOP-2), and matrix metalloprotinase 13 (MMP-13) in an effort to explore the cytotoxic potential of the diverse compounds obtained from both Aspergillus species. 1,6,8-Trihydroxy-4-benzoyloxy-3-methylanthraquinone (23) revealed the most firm fitting with the active pockets of CDK-2 and MMP-13; meanwhile, variecolorin H alkaloid (14) showed the highest fitting within TOP-2 with ∆G equals to −36.51 kcal/mole. Thus, fungal metabolites could offer new drug entities for combating cancer. Relevant data about both Aspergillus species up to August 2020 were gathered from various databases comprising Scifinder (https://scifinder.cas.org/scifinder/login) for secondary metabolite-related studies; meanwhile, for biology-related articles, data were collected from both PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) and Web of Knowledge (http://www.webofknowledge.com) as well

    Bioactive Alkaloids from Genus <i>Aspergillus</i>: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-CoV-2 Inhibitory Activity Using Molecular Modelling

    No full text
    Genus Aspergillus represents a widely spread genus of fungi that is highly popular for possessing potent medicinal potential comprising mainly antimicrobial, cytotoxic and antioxidant properties. They are highly attributed to its richness by alkaloids, terpenes, steroids and polyketons. This review aimed to comprehensively explore the diverse alkaloids isolated and identified from different species of genus Aspergillus that were found to be associated with different marine organisms regarding their chemistry and biology. Around 174 alkaloid metabolites were reported, 66 of which showed important biological activities with respect to the tested biological activities mainly comprising antiviral, antibacterial, antifungal, cytotoxic, antioxidant and antifouling activities. Besides, in silico studies on different microbial proteins comprising DNA-gyrase, topoisomerase IV, dihydrofolate reductase, transcriptional regulator TcaR (protein), and aminoglycoside nucleotidyl transferase were done for sixteen alkaloids that showed anti-infective potential for better mechanistic interpretation of their probable mode of action. The inhibitory potential of compounds vs. Angiotensin-Converting Enzyme 2 (ACE2) as an important therapeutic target combating COVID-19 infection and its complication was also examined using molecular docking. Fumigatoside E showed the best fitting within the active sites of all the examined proteins. Thus, Aspergillus species isolated from marine organisms could afford bioactive entities combating infectious diseases
    corecore