22 research outputs found

    Modulation of ileal apical Na+-dependent bile acid transporter ASBT by protein kinase C

    No full text
    Ileal apical Na+-dependent bile acid transporter (ASBT) is responsible for reabsorbing the majority of bile acids from the intestinal lumen. Rapid adaptation of ASBT function in response to physiological and pathophysiological stimuli is essential for the maintenance of bile acid homeostasis. However, not much is known about molecular mechanisms responsible for acute posttranscriptional regulation of ileal ASBT. The protein kinase C (PKC)-dependent pathway represents a major cell signaling mechanism influencing intestinal epithelial functions. The present studies were, therefore, undertaken to investigate ASBT regulation in intestinal Caco-2 monolayers by the well-known PKC activator phorbol 12-myristate 13-acetate (PMA). Our results showed that Na+-dependent [3H]taurocholic acid uptake in Caco-2 cells was significantly inhibited in response to 2 h incubation with 100 nM PMA compared with incubation with 4α-PMA (inactive form). The inhibitory effect of PMA was blocked in the presence of 5 μM bisindolylmaleimide I (PKC inhibitor) but not 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid-AM (Ca2+ chelator) or LY-294002 (phosphatidylinositol 3-kinase inhibitor). PMA inhibition of ASBT function was also abrogated in the presence of myristoylated PKCζ pseudosubstrate peptide, indicating involvement of the atypical PKCζ isoform. The inhibition by PMA was associated with a significant decrease in the maximal velocity of the transporter and a reduction in ASBT plasma membrane content, suggesting a modulation by vesicular recycling. Our novel findings demonstrate a posttranscriptional modulation of ileal ASBT function and membrane expression by phorbol ester via a PKCζ-dependent pathway

    Green tea catechin EGCG inhibits ileal apical sodium bile acid transporter ASBT

    No full text
    Green tea catechins exhibit hypocholesterolemic effects probably via their inhibitory effects on intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) is responsible for reabsorption of bile acids. The present studies were, therefore, designed to investigate the modulation of ASBT function and membrane expression by green tea catechins in human embryonic kidney HEK-293 cells stably transfected with ASBT-V5 fusion protein and intestinal Caco-2 monolayers. Our data showed that ASBT activity was significantly decreased by (−)-epigallocatechin-3-gallate (EGCG) but not other green tea catechins. Inhibition of PKC, phosphatidylinositol 3-kinase, and MAPK-dependent pathways failed to block the reduction in ASBT activity by EGCG. Kinetics studies showed a significant decrease in the Vmax of the transporter, whereas total ASBT content on the plasma membrane was unaltered by EGCG. Concomitant with the decrease in ASBT function, EGCG significantly reduced ASBT pool in the detergent-insoluble fraction, while increasing its presence in the detergent-soluble fraction of plasma membrane. Furthermore, EGCG decreased the association of ASBT with floating lipid raft fractions of cellular membrane on Optiprep density gradient. In conclusion, our data demonstrate a novel role of lipid rafts in the modulation of ASBT function by the dietary component EGCG, which may underlie the hypocholesterolemic effects of green tea

    Enteropathogenic Escherichia coli inhibits ileal sodium-dependent bile acid transporter ASBT

    No full text
    Apical sodium-dependent bile acid transporter (ASBT) is responsible for the absorption of bile acids from the intestine. A decrease in ASBT function and expression has been implicated in diarrhea associated with intestinal inflammation. Whether infection with pathogenic microorganisms such as the enteropathogenic Escherichia coli (EPEC) affect ASBT activity is not known. EPEC is a food-borne enteric pathogen that translocates bacterial effector molecules via type three secretion system (TTSS) into host cells and is a major cause of infantile diarrhea. We investigated the effects of EPEC infection on ileal ASBT function utilizing human intestinal Caco2 cells and HEK-293 cells stably transfected with ASBT-V5 fusion protein (2BT cells). ASBT activity was significantly inhibited following 60 min infection with EPEC but not with nonpathogenic E. coli. Mutations in bacterial escN, espA, espB, and espD, the genes encoding for the elements of bacterial TTSS, ablated EPEC inhibitory effect on ASBT function. Furthermore, mutation in the bacterial BFP gene encoding for bundleforming pili abrogated the inhibition of ASBT by EPEC, indicating the essential role for bacterial aggregation and the early attachment. The inhibition by EPEC was associated with a significant decrease in the Vmax of the transporter and a reduction in the level of ASBT on the plasma membrane. The inhibition of ASBT by EPEC was blocked in the presence of protein tyrosine phosphatase inhibitors. Our studies provide novel evidence for the alterations in the activity of ASBT by EPEC infection and suggest a possible effect for EPEC in influencing intestinal bile acid homeostasis

    Enteropathogenic Escherichia coli inhibits ileal sodium-dependent bile acid transporter ASBT

    No full text
    Apical sodium-dependent bile acid transporter (ASBT) is responsible for the absorption of bile acids from the intestine. A decrease in ASBT function and expression has been implicated in diarrhea associated with intestinal inflammation. Whether infection with pathogenic microorganisms such as the enteropathogenic Escherichia coli (EPEC) affect ASBT activity is not known. EPEC is a food-borne enteric pathogen that translocates bacterial effector molecules via type three secretion system (TTSS) into host cells and is a major cause of infantile diarrhea. We investigated the effects of EPEC infection on ileal ASBT function utilizing human intestinal Caco2 cells and HEK-293 cells stably transfected with ASBT-V5 fusion protein (2BT cells). ASBT activity was significantly inhibited following 60 min infection with EPEC but not with nonpathogenic E. coli. Mutations in bacterial escN, espA, espB, and espD, the genes encoding for the elements of bacterial TTSS, ablated EPEC inhibitory effect on ASBT function. Furthermore, mutation in the bacterial BFP gene encoding for bundle-forming pili abrogated the inhibition of ASBT by EPEC, indicating the essential role for bacterial aggregation and the early attachment. The inhibition by EPEC was associated with a significant decrease in the V(max) of the transporter and a reduction in the level of ASBT on the plasma membrane. The inhibition of ASBT by EPEC was blocked in the presence of protein tyrosine phosphatase inhibitors. Our studies provide novel evidence for the alterations in the activity of ASBT by EPEC infection and suggest a possible effect for EPEC in influencing intestinal bile acid homeostasis
    corecore