2 research outputs found
Bayesian Networks for the Driver Overtaking Assistance System on Two-lane Roads
Unsuccessful overtaking maneuvers on two-lane rural roads are one of the major causes of road accidents in the 21st century. The complexity of this maneuver merits the adoption of a thorough method for developing a proposed assistance system to prevent accidents and consequently reduce the high number of fatalities and the associated economic costs. This study aims to introduce an intelligent Driver Overtaking Assistance System (DOAS) to assist drivers in performing overtaking maneuvers safely. The study also will introduce a method to assess the impact of all the influential variables related to the driver, vehicle, traffic, road, and the surrounding environment. In momentary driving situations, the DOAS uses the communicated information via Hello beacon messages (HBM) and a set of input sensors to measure the possibility of overtaking the preceding vehicle(s) proactively by considering whether the distance gap to the oncoming vehicle is sufficient for overtaking. Besides, the proposed system is a vehicle-based safety system based on the collection of contextual information from the driving vicinity to acquire all relevant information regarding the ambient driving environment and the vehicles involved in the overtaking. To do this, DOAS uses a Bayesian Network (BN) to model overtaking maneuvers. The work presented shows high accuracy and promising results in aiding safe overtaking, with significant improvements to overtaking maneuvers on two-lane rural roads
Developing a New Driver Assistance System for Overtaking on Two-Lane Roads using Predictive Models
The complexity of an overtaking maneuver on two-lane roads merits a thorough method for developing an assistance system to prevent accidents, thus reducing the number of fatalities and the associated economic costs. This research aims to introduce a new Driver Overtaking Assistance System (DOAS). This system is based on the proactive prediction of the possibility of overtaking any preceding vehicle(s) both accurately and safely. To provide a comprehensive system, different factors related to the driver, the vehicle, the road, and the environment which have an impact on the maneuver have been taken into consideration. In addition to considering the main overtaking strategies including accelerative, flying, piggybacking, and the 2+. The proposed system is a vehicle-based safety system based on the collection of contextual information from the driving vicinity through Hello beacon messages and a set of sensors that are used as part of the reasoning process of the context-aware architecture to safely initiate the overtaking maneuver. A classification model was implemented for both the Artificial Neural Network (ANN) and Support Vector Machine (SVM) learning algorithms. A vehicle driving simulator STISIM Drive® was used to conduct driving experiments for 100 participants of different ages, gender, and levels of mental awareness. The results obtained from the DOAS show high accuracy in aiding a safe overtaking maneuver. The classification model shows promising results in the predictions, through perfect accuracy and a very low level of outcome errors