955 research outputs found
Weakly Interacting, Dilute Bose Gases in 2D
This article surveys a number of theoretical problems and open questions in
the field of two-dimensional dilute Bose gases with weak repulsive
interactions. In contrast to three dimensions, in two dimensions the formation
of long-range order is prohibited by the Bogoliubov-Hohenberg theorem, and
Bose-Einstein condensation is not expected to be realized. Nevertheless, first
experimental indications supporting the formation of the condensate in low
dimensional systems have been recently obtained. This unexpected behaviour
appears to be due to the non-uniformity, introduced into a system by the
external trapping potential. Theoretical predictions, made for homogeneous
systems, require therefore careful reexamination.
We survey a number of popular theoretical treatments of the dilute weakly
interacting Bose gas and discuss their regions of applicability. The
possibility of Bose-Einstein condensation in a two-dimensional gas, the
validity of perturbative t-matrix approximation and diluteness condition are
issues that we discuss in detail.Comment: Survey, 25 pages RMP style, revised version, refs added, some changes
made, accepted for publication in Rev. Mod. Phy
Multitemporal generalization of the Tangherlini solution
The n-time generalization of the Tangherlini solution [1] is considered. The
equations of geodesics for the metric are integrated. For it is shown
that the naked singularity is absent only for two sets of parameters,
corresponding to the trivial extensions of the Tangherlini solution. The motion
of a relativistic particle in the multitemporal background is considered. This
motion is governed by the gravitational mass tensor. Some generalizations of
the solution, including the multitemporal analogue of the Myers-Perry charged
black hole solution, are obtained.Comment: 14 pages. RGA-CSVR-005/9
Spectral signatures of the Luttinger liquid to charge-density-wave transition
Electron- and phonon spectral functions of the one-dimensional,
spinless-fermion Holstein model at half filling are calculated in the four
distinct regimes of the phase diagram, corresponding to an attractive or
repulsive Luttinger liquid at weak electron-phonon coupling, and a band- or
polaronic insulator at strong coupling. The results obtained by means of kernel
polynomial and systematic cluster approaches reveal substantially different
physics in these regimes and further indicate that the size of the phonon
frequency significantly affects the nature of the quantum Peierls phase
transition.Comment: 5 pages, 4 figures; final version, accepted for publication in
Physical Review
A remark on the Hankel determinant formula for solutions of the Toda equation
We consider the Hankel determinant formula of the functions of the
Toda equation. We present a relationship between the determinant formula and
the auxiliary linear problem, which is characterized by a compact formula for
the functions in the framework of the KP theory. Similar phenomena that
have been observed for the Painlev\'e II and IV equations are recovered. The
case of finite lattice is also discussed.Comment: 14 pages, IOP styl
Auxiliary matrices for the six-vertex model at roots of 1 and a geometric interpretation of its symmetries
The construction of auxiliary matrices for the six-vertex model at a root of
unity is investigated from a quantum group theoretic point of view. Employing
the concept of intertwiners associated with the quantum loop algebra
at a three parameter family of auxiliary matrices
is constructed. The elements of this family satisfy a functional relation with
the transfer matrix allowing one to solve the eigenvalue problem of the model
and to derive the Bethe ansatz equations. This functional relation is obtained
from the decomposition of a tensor product of evaluation representations and
involves auxiliary matrices with different parameters. Because of this
dependence on additional parameters the auxiliary matrices break in general the
finite symmetries of the six-vertex model, such as spin-reversal or spin
conservation. More importantly, they also lift the extra degeneracies of the
transfer matrix due to the loop symmetry present at rational coupling values.
The extra parameters in the auxiliary matrices are shown to be directly related
to the elements in the enlarged center of the quantum loop algebra
at . This connection provides a geometric
interpretation of the enhanced symmetry of the six-vertex model at rational
coupling. The parameters labelling the auxiliary matrices can be interpreted as
coordinates on a three-dimensional complex hypersurface which remains invariant
under the action of an infinite-dimensional group of analytic transformations,
called the quantum coadjoint action.Comment: 52 pages, TCI LaTex, v2: equation (167) corrected, two references
adde
Enhancement of the Thermal Conductivity in gapped Quantum Spin Chains
We study mechanism of magnetic energy transport, motivated by recent
measurements of the thermal conductivity in low dimensional quantum magnets. We
point out a possible mechanism of enhancement of the thermal conductivity in
gapped magnetic system, where the magnetic energy transport plays a crucial
role. This mechanism gives an interpretation for the recent experiment of
CuGeO_3, where the thermal conductivity depends on the crystal direction.Comment: 4 pages, 2 figure
- …
