547 research outputs found
POLY (1-TRIMETHYSILYL-1-PROPYNE) MEMBRANE REGENERATION PROCESS
A novel process for the regeneration of PTMSP membranes is disclosed. The regeneration process includes washing a fouled PTMSP membrane with a solution containing at least about 50% butanol in water for a time sufficient to increase the flux and/or selectivity of the membrane. This regeneration process with a butanol containing solution significantly improves both the flux and selectivity of the PTMSP membrane and can regenerate the flux of the PTMSP membrane to the level of a previously unused membrane
A symplectic realization of the Volterra lattice
We examine the multiple Hamiltonian structure and construct a symplectic
realization of the Volterra model. We rediscover the hierarchy of invariants,
Poisson brackets and master symmetries via the use of a recursion operator. The
rational Volterra bracket is obtained using a negative recursion operator.Comment: 8 page
Effective-Mass Dirac Equation for Woods-Saxon Potential: Scattering, Bound States and Resonances
Approximate scattering and bound state solutions of the one-dimensional
effective-mass Dirac equation with the Woods-Saxon potential are obtained in
terms of the hypergeometric-type functions. Transmission and reflection
coefficients are calculated by using behavior of the wave functions at
infinity. The same analysis is done for the constant mass case. It is also
pointed out that our results are in agreement with those obtained in
literature. Meanwhile, an analytic expression is obtained for the transmission
resonance and observed that the expressions for bound states and resonances are
equal for the energy values .Comment: 20 pages, 6 figure
Spectral signatures of the Luttinger liquid to charge-density-wave transition
Electron- and phonon spectral functions of the one-dimensional,
spinless-fermion Holstein model at half filling are calculated in the four
distinct regimes of the phase diagram, corresponding to an attractive or
repulsive Luttinger liquid at weak electron-phonon coupling, and a band- or
polaronic insulator at strong coupling. The results obtained by means of kernel
polynomial and systematic cluster approaches reveal substantially different
physics in these regimes and further indicate that the size of the phonon
frequency significantly affects the nature of the quantum Peierls phase
transition.Comment: 5 pages, 4 figures; final version, accepted for publication in
Physical Review
Deformed dimensional regularization for odd (and even) dimensional theories
I formulate a deformation of the dimensional-regularization technique that is
useful for theories where the common dimensional regularization does not apply.
The Dirac algebra is not dimensionally continued, to avoid inconsistencies with
the trace of an odd product of gamma matrices in odd dimensions. The
regularization is completed with an evanescent higher-derivative deformation,
which proves to be efficient in practical computations. This technique is
particularly convenient in three dimensions for Chern-Simons gauge fields,
two-component fermions and four-fermion models in the large N limit, eventually
coupled with quantum gravity. Differently from even dimensions, in odd
dimensions it is not always possible to have propagators with fully Lorentz
invariant denominators. The main features of the deformed technique are
illustrated in a set of sample calculations. The regularization is universal,
local, manifestly gauge-invariant and Lorentz invariant in the physical sector
of spacetime. In flat space power-like divergences are set to zero by default.
Infinitely many evanescent operators are automatically dropped.Comment: 27 pages, 3 figures; v2: expanded presentation of some arguments,
IJMP
Global Alfven Wave Heating of the Magnetosphere of Young Stars
Excitation of a Global Alfven wave (GAW) is proposed as a viable mechanism to
explain plasma heating in the magnetosphere of young stars. The wave and basic
plasma parameters are compatible with the requirement that the dissipation
length of GAWs be comparable to the distance between the shocked region at the
star's surface and the truncation region in the accretion disk. A two-fluid
magnetohydrodynamic plasma model is used in the analysis. A current carrying
filament along magnetic field lines acts as a waveguide for the GAW. The
current in the filament is driven by plasma waves along the magnetic field
lines and/or by plasma crossing magnetic field lines in the truncated region of
the disk of the accreting plasma. The conversion of a small fraction of the
kinetic energy into GAW energy is sufficient to heat the plasma filament to
observed temperatures.Comment: Submitted to ApJ, aheatf.tex, 2 figure
Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core
SL-AV (semi-Lagrangian, based on the absolute vorticity equation)
is a global hydrostatic atmospheric model. Its latest version, SL-AV20,
provides global operational medium-range weather forecast with 20 km
resolution over Russia. The lower-resolution configurations of SL-AV20 are
being tested for seasonal prediction and climate modeling.
The article presents the model dynamical core. Its main features are a
vorticity-divergence formulation at the unstaggered grid, high-order
finite-difference approximations, semi-Lagrangian semi-implicit
discretization and the reduced latitude–longitude grid with variable
resolution in latitude.
The accuracy of SL-AV20 numerical solutions using a reduced lat–lon grid and
the variable resolution in latitude is tested with two idealized test cases.
Accuracy and stability of SL-AV20 in the presence of the orography forcing
are tested using the mountain-induced Rossby wave test case. The results of
all three tests are in good agreement with other published model solutions.
It is shown that the use of the reduced grid does not significantly affect
the accuracy up to the 25 % reduction in the number of grid points with
respect to the regular grid. Variable resolution in latitude allows us to
improve the accuracy of a solution in the region of interest
Non-Perturbative Gravity and the Spin of the Lattice Graviton
The lattice formulation of quantum gravity provides a natural framework in
which non-perturbative properties of the ground state can be studied in detail.
In this paper we investigate how the lattice results relate to the continuum
semiclassical expansion about smooth manifolds. As an example we give an
explicit form for the lattice ground state wave functional for semiclassical
geometries. We then do a detailed comparison between the more recent
predictions from the lattice regularized theory, and results obtained in the
continuum for the non-trivial ultraviolet fixed point of quantum gravity found
using weak field and non-perturbative methods. In particular we focus on the
derivative of the beta function at the fixed point and the related universal
critical exponent for gravitation. Based on recently available lattice
and continuum results we assess the evidence for the presence of a massless
spin two particle in the continuum limit of the strongly coupled lattice
theory. Finally we compare the lattice prediction for the vacuum-polarization
induced weak scale dependence of the gravitational coupling with recent
calculations in the continuum, finding similar effects.Comment: 46 pages, one figur
The twisted XXZ chain at roots of unity revisited
The symmetries of the twisted XXZ spin-chain (alias the twisted six-vertex
model) at roots of unity are investigated. It is shown that when the twist
parameter is chosen to depend on the total spin an infinite-dimensional
non-abelian symmetry algebra can be explicitly constructed for all spin
sectors. This symmetry algebra is identified to be the upper or lower Borel
subalgebra of the sl_2 loop algebra. The proof uses only the intertwining
property of the six-vertex monodromy matrix and the familiar relations of the
six-vertex Yang-Baxter algebra.Comment: 10 pages, 2 figures. One footnote and some comments in the
conclusions adde
- …