48 research outputs found

    A review of the effect of trace metals on freshwater cyanobacterial growth and toxin production

    Full text link
    © 2019 Author(s). Cyanobacterial blooms are becoming more common in freshwater systems, causing ecological degradation and human health risks through exposure to cyanotoxins. The role of phosphorus and nitrogen in cyanobacterial bloom formation is well documented and these are regularly the focus of management plans. There is also strong evidence that trace metals are required for a wide range of cellular processes, however their importance as a limiting factor of cyanobacterial growth in ecological systems is unclear. Furthermore, some studies have suggested a direct link between cyanotoxin production and some trace metals. This review synthesises current knowledge on the following: (1) the biochemical role of trace metals (particularly iron, cobalt, copper, manganese, molybdenum and zinc), (2) the growth limitation of cyanobacteria by trace metals, (3) the trace metal regulation of the phytoplankton community structure and (4) the role of trace metals in cyanotoxin production. Iron dominated the literature and regularly influenced bloom formation, with 15 of 18 studies indicating limitation or colimitation of cyanobacterial growth. A range of other trace metals were found to have a demonstrated capacity to limit cyanobacterial growth, and these metals require further study. The effect of trace metals on cyanotoxin production is equivocal and highly variable. Better understanding the role of trace metals in cyanobacterial growth and bloom formation is an essential component of freshwater management and a direction for future research

    An examination of microcystin-LR accumulation and toxicity using tethered bilayer lipid membranes (tBLMs)

    Full text link
    © 2018 Elsevier Ltd Microcystin-LR (MC-LR) is a potent cyanobacterial toxin responsible for animal and human poisonings worldwide. MC-LR is found in organisms throughout the foodweb, however there is conjecture regarding whether it biomagnifies. Few studies have investigated how MC-LR interacts with lipid membranes, a determinant of biomagnification potential. We tested whether 1 μM MC-LR irreversibly associates with lipid bilayers or causes the creation of pore defects upon short and long-term exposure. Using tethered bilayer lipid membranes (tBLMs), we observed an increase in membrane conduction in tBLMs, representing an interaction of microcystin-LR with the lipid bilayer and a change in membrane packing properties. However, there were minimal changes in membrane capacitance upon short and long-term exposure, and MC-LR exhibited a rapid off-rate. Upon 24 h exposure to the toxin, no lipophilic multimeric complexes were detected capable of altering the toxin's off-rate. There was no evidence of the creation of new pores. This study demonstrates that MC-LR does not irreversibly imbed itself into lipids membranes after short or long-term exposure and suggests MC-LR does not biomagnify through the food web via lipid storage

    Production of β-methylamino-L-alanine (BMAA) and its isomers by freshwater diatoms

    Full text link
    © 2019 by the authors. β-methylamino-L-alanine (BMAA) is a non-protein amino acid that has been implicated as a risk factor for motor neurone disease (MND). BMAA is produced by a wide range of cyanobacteria globally and by a small number of marine diatoms. BMAA is commonly found with two of its constitutional isomers: 2,4-diaminobutyric acid (2,4-DAB), and N-(2-aminoethyl)glycine (AEG). The isomer 2,4-DAB, like BMAA, has neurotoxic properties. While many studies have shown BMAA production by cyanobacteria, few studies have looked at other algal groups. Several studies have shown BMAA production by marine diatoms; however, there are no studies examining freshwater diatoms. This study aimed to determine if some freshwater diatoms produced BMAA, and which diatom taxa are capable of BMAA, 2,4-DAB and AEG production. Five axenic diatom cultures were established from river and lake sites across eastern Australia. Cultures were harvested during the stationary growth phase and intracellular amino acids were extracted. Using liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS), diatom extracts were analysed for the presence of both free and protein-associated BMAA, 2,4-DAB and AEG. Of the five diatom cultures analysed, four were found to have detectable BMAA and AEG, while 2,4-DAB was found in all cultures. These results show that BMAA production by diatoms is not confined to marine genera and that the prevalence of these non-protein amino acids in Australian freshwater environments cannot be solely attributed to cyanobacteria

    A Frameshift in CSF2RB Predominant Among Ashkenazi Jews Increases Risk for Crohn's Disease and Reduces Monocyte Signaling via GMCSF

    Get PDF
    BACKGROUND & AIMS: Crohn's disease (CD) has the highest prevalence in Ashkenazi Jewish populations. We sought to identify rare, CD-associated frameshift variants of high functional and statistical effects. METHODS: We performed exome-sequencing and array-based genotype analyses of 1477 Ashkenazi Jewish individuals with CD and 2614 Ashkenazi Jewish individuals without CD (controls). To validate our findings, we performed genotype analyses of an additional 1515 CD cases and 7052 controls for frameshift mutations in the colony stimulating factor 2 receptor beta common subunit gene (CSF2RB). Intestinal tissues and blood samples were collected from patients with CD; lamina propria leukocytes were isolated and expression of CSF2RB and GMCSF-responsive cells were defined by mass cytometry (CyTOF analysis). Variants of CSF2RB were transfected into HEK293 cells and expression and functions of gene products were compared. RESULTS: In the discovery cohort, we associated CD with a frameshift mutation in CSF2RB (P=8.52x10-4); the finding was validated in the replication cohort (combined P=3.42x10-6). Incubation of intestinal lamina propria leukocytes with GMCSF resulted in high levels of phosphorylation of STAT5 and lesser increases in phosphorylation of ERK and AKT. Cells co-transfected with full-length and mutant forms of CSF2RB had reduced pSTAT5 following stimulation with GMCSF, compared to cells transfected with control CSF2RB, indicating a dominant negative effect of the mutant gene. Monocytes from patients with CD who were heterozygous for the frameshift mutation (6% of CD cases analyzed) had reduced responses to GMCSF and markedly decreased activity of aldehyde dehydrogenase; activity of this enzyme has been associated with immune tolerance. CONCLUSIONS: In a genetic analysis of Ashkenazi Jewish individuals, we associated CD with a frameshift mutation in CSF2RB. Intestinal monocytes from carriers of this mutation had reduced responses to GMCSF, providing an additional mechanism for alterations to the innate immune response in individuals with CD

    A synthesis of the ecological processes influencing variation in life history and movement patterns of American eel: towards a global assessment

    Full text link

    Assessing the importance of cobalt as a micronutrient for freshwater cyanobacteria.

    Full text link
    Micronutrients play key roles in numerous metabolic processes in cyanobacteria. However, our understanding of whether the micronutrient cobalt influences the productivity of freshwater systems or the occurrence of cyanobacterial blooms is limited. This study aimed to quantify the concentration of Co necessary for optimal cyanobacterial growth by exposing Microcystis aeruginosa to a range of Co concentrations under culture conditions. Extended exposure to concentrations below ˜0.06 μg · L-1 resulted in notable inhibition of M. aeruginosa growth. A clear negative relationship was observed between Co concentration in solution and intracellular Fe quota of M. aeruginosa, possibly due to decreased transport of Fe at higher Co concentrations. Cyanocobalamin and any Co within the structure of cyanocobalamin appears to be non-bioavailable to M. aeruginosa, instead they likely rely on the synthesis of a structural variant - pseudocobalamin, which may have implications for the wider algal community as the variants of cobalamin are not necessarily functionally exchangeable. To evaluate the likelihood of Co limitation of cyanobacterial growth under field conditions, a survey of 10 freshwater reservoirs in South-Eastern Australia was conducted. Four of the ten sites had dissolved Co concentrations below the 0.06 μg · L-1 threshold value. All four of these sites rarely undergo cyanobacterial blooms, strengthening evidence of the potential for Co to limit growth, perhaps either alone or in combination with phosphorus

    Micronutrients as growth limiting factors in cyanobacterial blooms; a survey of freshwaters in South East Australia

    Full text link
    The role of trace metal micronutrients in limiting cyanobacterial growth and structuring the phytoplankton community is becoming more evident. However, little is known regarding the extent of micronutrient limitation in freshwaters or which micronutrient conditions favour potentially-toxic cyanobacteria. To assess how freshwater phytoplankton respond to micronutrient and macronutrient additions, we conducted nutrient amendment bioassays at seven sites across South Eastern-Australia. Sites were variable in cyanobacterial cell densities and phytoplankton community compositions. At two sites, Mannus Lake and Burrendong Dam, micronutrient additions (iron, cobalt, copper, manganese, molybdenum and zinc) increased cyanobacterial growth, indicating micronutrient limitation. Both sites had cyanobacterial blooms present at the onset of the experiment, dominated by Chrysosporum ovalisporum at Mannus Lake and Microcystis aeruginosa at Burrendong Dam. This suggests that micronutrients may be an important regulator of the severity of cyanobacterial blooms and may become limiting when there is high competition for nutrient resources. The addition of the micronutrient mixture resulted in a higher proportion of cyanobacteria compared to the control and a lower diversity community compared to phosphorus additions, indicating that micronutrients can not only influence cyanobacterial biovolume but also their ability to dominate the phytoplankton community. This reinforces that micronutrient requirements of phytoplankton are often species specific. As micronutrient enrichment is often overlooked when assessing nutrient-constraints on cyanobacterial growth, this study provides valuable insight into the conditions that may influence cyanobacterial blooms and the potential contribution of micronutrients to eutrophication

    Severe cyanobacterial blooms in an Australian lake; causes and factors controlling succession patterns.

    Full text link
    Cyanobacterial blooms have major impacts on the ecological integrity and anthropogenic value of freshwater systems. Chrysosporum ovalisporum, a potentially toxic cyanobacteria has been rare in Australian waters until recently when is has bloomed in a number of lake and river systems. The aim of this study was to determine drivers of its growth and growing dominance. We performed regular monitoring of Mannus Lake, a small freshwater reservoir in South-Eastern Australia that has recently undergone extremely dense bloom events. Blooms of the diazotrophic Chrysosporum ovalisporum occurred in both summers of the 19 month study during periods of persistent thermal stratification. Following the C. ovalisporum blooms, non-diazotrophic taxa (Microcystis aeruginosa and Woronichinia sp.) dominated the phytoplankton community under less stratified conditions. Thermal stratification and nitrogen availability appeared to be the primary drivers of changes in cyanobacterial community structure. We propose that the observed transition from C. ovalisporum to M. aeruginosa and/or Woronichinia sp. may be a result of nitrogen limitation in early summer, which combined with persistent thermal stratification led to an ecological advantage for the nitrogen-fixing C. ovalisporum. Mixing events caused the senescence of the C. ovalisporum bloom, likely supplementing the nutrient budget of the lake with atmospherically derived N and alleviating N limitation to non-diazotrophic taxa. Non-diazotrophic cyanobacterial growth then increased, albeit at much lower biovolumes compared to the initial bloom. Overall, the results demonstrate the role of thermal stratification and nutrient cycling in structuring the cyanobacterial community and provide insights into the environmental factors driving the proliferation of the relatively new, potentially toxic cyanobacterium C. ovalisporum in Australian waters
    corecore