58 research outputs found

    CCD-based imaging and 3D space--time mapping of terahertz fields via Kerr frequency conversion

    Get PDF
    We investigate the spatially and temporally resolved four-wave mixing of terahertz (THz) fields and optical pulses in large-bandgap dielectrics, such as diamond. We show that it is possible to perform beam profiling and space–time resolved mapping of THz fields by encoding the spatial information into an optical signal, which can then be recorded by a standard CCD camera

    Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy

    Get PDF
    IMPORTANCE Delays in screening programs and the reluctance of patients to seek medical attention because of the outbreak of SARS-CoV-2 could be associated with the risk of more advanced colorectal cancers at diagnosis. OBJECTIVE To evaluate whether the SARS-CoV-2 pandemic was associated with more advanced oncologic stage and change in clinical presentation for patients with colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This retrospective, multicenter cohort study included all 17 938 adult patients who underwent surgery for colorectal cancer from March 1, 2020, to December 31, 2021 (pandemic period), and from January 1, 2018, to February 29, 2020 (prepandemic period), in 81 participating centers in Italy, including tertiary centers and community hospitals. Follow-up was 30 days from surgery. EXPOSURES Any type of surgical procedure for colorectal cancer, including explorative surgery, palliative procedures, and atypical or segmental resections. MAIN OUTCOMES AND MEASURES The primary outcome was advanced stage of colorectal cancer at diagnosis. Secondary outcomes were distant metastasis, T4 stage, aggressive biology (defined as cancer with at least 1 of the following characteristics: signet ring cells, mucinous tumor, budding, lymphovascular invasion, perineural invasion, and lymphangitis), stenotic lesion, emergency surgery, and palliative surgery. The independent association between the pandemic period and the outcomes was assessed using multivariate random-effects logistic regression, with hospital as the cluster variable. RESULTS A total of 17 938 patients (10 007 men [55.8%]; mean [SD] age, 70.6 [12.2] years) underwent surgery for colorectal cancer: 7796 (43.5%) during the pandemic period and 10 142 (56.5%) during the prepandemic period. Logistic regression indicated that the pandemic period was significantly associated with an increased rate of advanced-stage colorectal cancer (odds ratio [OR], 1.07; 95%CI, 1.01-1.13; P = .03), aggressive biology (OR, 1.32; 95%CI, 1.15-1.53; P < .001), and stenotic lesions (OR, 1.15; 95%CI, 1.01-1.31; P = .03). CONCLUSIONS AND RELEVANCE This cohort study suggests a significant association between the SARS-CoV-2 pandemic and the risk of a more advanced oncologic stage at diagnosis among patients undergoing surgery for colorectal cancer and might indicate a potential reduction of survival for these patients

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Throughput maximization and buffer design of robotized flexible production systems with feeder renewals and priority rules

    No full text
    Automation is a powerful way to reduce production costs. The growing market demand for a wide set of models and small batch production make flexible automated production systems an emerging need in several industries. The aim of this paper is to analyze and to maximize the performance of robotized flexible production systems consisting of a robot, feeder, working station, and unloading station, where the operations of the working cycle are scheduled using a sequencing algorithm based on priority rules. Since the working cycle is not predefined, the cycle time is strongly influenced by the parameters characterizing the workcell such as the workcell layout, the robot transfer movements, the feeder, the working operations, and the presence of a buffer between stations. In this work, we modeled the working cycle of a simple but representative layout of an industrial robotized flexible production system with and without buffer, and we implemented a recursive algorithm to estimate the cycle time. The analytical model derived was compared to the experimental results, obtained by using a prototype of the flexible production workcell. The results show that the analytical model is a powerful tool to estimate the performance of the workcell and to identify the design variables or their combinations that maximize the throughput

    Phase-matched nonlinear interactions in a holey fiber induced by infrared super-continuum generation

    No full text
    Abstract By coupling 110-fs pulses at k ¼ 1.55 lm into a 45-cm-long holey fiber, we observe the generation of a broadband continuum, followed by the appearance of a sharp blue line at 430 nm. Blue light is generated in a high-order mode by a third-harmonic generation process that is phase-matched with the super-continuum component at 1.29 lm. Such an interpretation is supported by measurements performed by using 1.29-lm pulses and also by simulation. In addition we find that the choice of an input polarization tilted with respect to the fiber-birefringence axis can lead to the generation of new frequencies through a four-wave mixing process that exploits non-diagonal components of the third-order susceptibility
    corecore