108 research outputs found

    Transcription of Ehrlichia chaffeensis genes is accomplished by RNA polymerase holoenzyme containing either sigma 32 or sigma 70

    Get PDF
    Citation: Liu, H., Ohlen, T. V., Cheng, C., Faburay, B., & Ganta, R. R. (2013). Transcription of Ehrlichia chaffeensis Genes Is Accomplished by RNA Polymerase Holoenzyme Containing either Sigma 32 or Sigma 70. PLOS ONE, 8(11), e81780. https://doi.org/10.1371/journal.pone.0081780Bacterial gene transcription is initiated by RNA polymerase containing a sigma factor. To understand gene regulation in Ehrlichia chaffeensis, an important tick-transmitted rickettsiae responsible for human monocytic ehrlichiosis, we initiated studies evaluating the transcriptional machinery of several genes of this organism. We mapped the transcription start sites of 10 genes and evaluated promoters of five genes (groE, dnaK, hup, p28-Omp14 and p28-Omp19 genes). We report here that the RNA polymerase binding elements of E. chaffeensis gene promoters are highly homologous for its only two transcription regulators, sigma 32 and sigma 70, and that gene expression is accomplished by either of the transcription regulators. RNA analysis revealed that although transcripts for both sigma 32 and sigma 70 are upregulated during the early replicative stage, their expression patterns remained similar for the entire replication cycle. We further present evidence demonstrating that the organism’s -35 motifs are essential to transcription initiations. The data suggest that E. chaffeensis gene regulation has evolved to support the organism’s growth, possibly to facilitate its intraphagosomal growth. Considering the limited availability of genetic tools, this study offers a novel alternative in defining gene regulation in E. chaffeensis and other related intracellular pathogens

    Serological Prevalence of Crimean–Congo Hemorrhagic Fever Virus Infection in Small Ruminants and Cattle in The Gambia

    Get PDF
    Crimean–Congo hemorrhagic fever virus (CCHFV) is a widely distributed tickborne zoonotic agent that infects a variety of host species. There is a lack of information on the true geographic distribution of the prevalence and risk of CCHFV in West Africa. A countrywide cross-sectional study involving 1413 extensively managed indigenous small ruminants and cattle at livestock sales markets and in village herds, respectively, was carried out in The Gambia. In sheep, an overall anti-CCHFV antibody prevalence of 18.9% (95% CI: 15.5–22.8%), goats 9.0% (95% CI: 6.7–11.7%), and cattle 59.9% (95% CI: 54.9–64.7%) was detected. Significant variation (p \u3c 0.05) in the prevalence of anti-CCHFV antibodies at sites in the five administrative regions (sheep: 4.8–25.9%; goats: 1.8–17.1%) and three agroecological zones (sheep: 8.9–32.9%; goats: 4.1–18.0%) was also observed. Comparatively, higher anti-CCHFV antibody prevalence was detected in cattle (33.3–84.0%) compared to small ruminants (1.8–8.1%). This study represents the first countrywide investigation of the seroprevalence of CCHFV in The Gambia, and the results suggest potential circulation and endemicity of the virus in the country. These data provide critical information vital to the development of informed policies for the surveillance, diagnosis, and control of CCFHV infection in The Gambia and the region

    A glycosylated recombinant subunit candidate vaccine consisting of Ehrlichia ruminantium major antigenic protein1 induces specific humoral and Th1 type cell responses in sheep

    Get PDF
    Heartwater, or cowdriosis, is a tick-borne disease of domestic and wild ruminants that is endemic in the Caribbean and sub-Saharan Africa. The disease is caused by an intracellular pathogen, Ehrlichia ruminantium and may be fatal within days of the onset of clinical signs with mortality rates of up to 90% in susceptible hosts. Due to the presence of competent tick vectors in North America, there is substantial risk of introduction of heartwater with potentially devastating consequences to the domestic livestock industry. There is currently no reliable or safe vaccine for use globally. To develop a protective DIVA (differentiate infected from vaccinated animals) subunit vaccine for heartwater, we targeted the E. ruminantium immunodominant major antigenic protein1 (MAP1) with the hypothesis that MAP1 is a glycosylated protein and glycans contained in the antigenic protein are important epitope determinants. Using a eukaryotic recombinant baculovirus expression system, we expressed and characterized, for the first time, a glycoform profile of MAP1 of two Caribbean E. ruminantium isolates, Antigua and Gardel. We have shown that the 37±38 kDa protein corresponded to a glycosylated form of the MAP1 protein, whereas the 31±32 kDa molecular weight band represented the non-glycosylated form of the protein frequently reported in scientific literature. Three groups of sheep (n = 3±6) were vaccinated with increasing doses of a bivalent (Antigua and Gardel MAP1) rMAP1 vaccine cocktail formulation with montanide ISA25 as an adjuvant. The glycosylated recombinant subunit vaccine induced E. ruminantium-specific humoral and Th1 type T cell responses, which are critical for controlling intracellular pathogens, including E. ruminantium, in infected hosts. These results provide an important basis for development of a subunit vaccine as a novel strategy to protect susceptible livestock against heartwater in non-endemic and endemic areas.The Science and Technology Directorate of the United States Department of Homeland Security (DHS) under Award Instrument Number: D15PC0027.http://www.plosone.orgam2017Veterinary Tropical Disease

    A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep

    Get PDF
    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in non-endemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, N-terminus glycoprotein (Gn) and C-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen adjuvanted with montanide ISA25, and at day 21 post-vaccination, each animal received a second dose of the same vaccine. The vaccine induced strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). Plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1,280. Further, all animals tested positive for neutralizing antibodies at day 328 pv. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible, and represents a promising vaccine platform for RVFV infection in susceptible species

    Rift Valley fever virus structural and nonstructural proteins: recombinant protein expression and immunoreactivity against antisera from sheep

    Get PDF
    The Rift Valley fever virus (RVFV) encodes the structural proteins nucleoprotein (N), aminoterminal glycoprotein (Gn), carboxyterminal glycoprotein (Gc), and L protein, 78-kD, and the nonstructural proteins NSm and NSs. Using the baculovirus system, we expressed the full-length coding sequence of N, NSs, NSm, Gc, and the ectodomain of the coding sequence of the Gn glycoprotein derived from the virulent strain of RVFV ZH548. Western blot analysis using anti-His antibodies and monoclonal antibodies against Gn and N confirmed expression of the recombinant proteins, and in vitro biochemical analysis showed that the two glycoproteins, Gn and Gc, were expressed in glycosylated form. Immunoreactivity profiles of the recombinant proteins in western blot and in indirect enzyme-linked immunosorbent assay against a panel of antisera obtained from vaccinated or wild type (RVFV)-challenged sheep confirmed the results obtained with anti-His antibodies and demonstrated the suitability of the baculo-expressed antigens for diagnostic assays. In addition, these recombinant proteins could be valuable for the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA)

    Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid Detection of Ehrlichia ruminantium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rickettsial bacterium <it>Ehrlichia ruminantium </it>is the causative agent of heartwater, a potential zoonotic disease of ruminants transmitted by ticks of the genus <it>Amblyomma</it>. The disease is distributed in nearly all of sub-Saharan Africa and some islands of the Caribbean, from where it threatens the American mainland. This report describes the development of two different loop-mediated isothermal amplification (LAMP) assays for sensitive and specific detection of <it>E. ruminantium</it>.</p> <p>Results</p> <p>Two sets of LAMP primers were designed from the pCS20 and <it>sodB </it>genes. The detection limits for each assay were 10 copies for pCS20 and 5 copies for <it>sodB</it>, which is at least 10 times higher than that of the conventional pCS20 PCR assay. DNA amplification was completed within 60 min. The assays detected 16 different isolates of <it>E. ruminantium </it>from geographically distinct countries as well as two attenuated vaccine isolates. No cross-reaction was observed with genetically related Rickettsiales, including zoonotic <it>Ehrlichia </it>species from the USA. LAMP detected more positive samples than conventional PCR but less than real-time PCR, when tested with field samples collected in sub-Saharan countries.</p> <p>Conclusions</p> <p>Due to its simplicity and specificity, LAMP has the potential for use in resource-poor settings and also for active screening of <it>E. ruminantium</it> in both heartwater-endemic areas and regions that are at risk of contracting the disease.</p

    Longitudinal monitoring of Ehrlichia ruminantium infection in Gambian lambs and kids by pCS20 PCR and MAP1-B ELISA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidemiology of <it>E. ruminantium </it>infection in extensively managed young animals is not adequately understood. Thus in this study, we monitored the onset (age at first infection) and kinetics of <it>E. ruminantium </it>infection and antibody response in extensively managed newborn lambs and kids at three sites in The Gambia.</p> <p>Methods</p> <p>We used a nested pCS20 PCR and MAP1-B ELISA in a longitudinal study to monitor the onset (age at first infection) and kinetics of <it>E. ruminantium </it>infection and antibody response respectively, in 77 newborn lambs and kids under a traditional husbandry system at three sites (Kerr Seringe, Keneba, Bansang) in The Gambia where heartwater is known to occur. The animals were monitored for field tick infestation and the comparative performance of the two assays in detecting <it>E. ruminantium </it>infection was also assessed.</p> <p>Results</p> <p>The infection rate detected by pCS20 PCR varied between 8.6% and 54.8% over the 162-day study period. Nineteen per cent of the animals in week 1 post-partum tested positive by pCS20 PCR with half of these infections (7/14) detected in the first 3 days after birth, suggesting that transmission other than by tick feeding had played a role. The earliest detectable <it>A. variegatum </it>infestation in the animals occurred in week 16 after birth. Antibodies detected by MAP1-B ELISA also varied, between 11.5% and 90%. Although there is considerable evidence that this assay can detect false positives and due to this and other reasons serology is not a reliable predictor of infection at least for heartwater. In contrast to the pCS20 PCR, the serological assay detected the highest proportion of positive animals in week 1 with a gradual decline in seropositivity with increasing age. The pCS20 PCR detected higher <it>E. ruminantium </it>prevalence in the animals with increasing age and both the Spearman's rank test (<it>r</it><sub><it>s </it></sub>= -0.1512; P = 0.003) and <it>kappa </it>statistic (-0.091 to 0.223) showed a low degree of agreement between the two assays.</p> <p>Conclusion</p> <p>The use of pCS20 PCR supported by transmission studies and clinical data could provide more accurate information on heartwater epidemiology in endemic areas and single-occasion testing of an animal may not reveal its true infection status. The view is supported because both the vector and vertical transmission may play a vital role in the epidemiology of heartwater in young small ruminants; the age range of 4 and 12 weeks corresponds to the period of increased susceptibility to heartwater in traditionally managed small ruminants.</p

    A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep

    Get PDF
    Citation: Faburay, B., Wilson, W. C., Gaudreault, N. N., Davis, A. S., Shivanna, V., Bawa, B., . . . Richt, J. A. (2016). A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep. Scientific Reports, 6, 12. doi:10.1038/srep27719Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n=5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts

    Phylogeny and S1 Gene Variation of Infectious Bronchitis Virus Detected in Broilers and Layers in Turkey

    Get PDF
    Citation: Yilmaz, H., Altan, E., Cizmecigil, U. Y., Gurel, A., Ozturk, G. Y., Bamac, O. E., . . . Turan, N. (2016). Phylogeny and S1 Gene Variation of Infectious Bronchitis Virus Detected in Broilers and Layers in Turkey. Avian Diseases, 60(3), 596-602. doi:10.1637/11346-120915-Reg.1The avian coronavirus infectious bronchitis virus (AvCoV-IBV) is recognized as an important global pathogen because new variants are a continuous threat to the poultry industry worldwide. This study investigates the genetic origin and diversity of AvCoV-IBV by analysis of the S1 sequence derived from 49 broiler flocks and 14 layer flocks in different regions of Turkey. AvCoV-IBV RNA was detected in 41 (83.6%) broiler flocks and nine (64.2%) of the layer flocks by TaqMan real-time RT-PCR. In addition, AvCoV-IBV RNA was detected in the tracheas 27/30 (90%), lungs 31/49 (62.2%), caecal tonsils 7/22 (31.8%), and kidneys 4/49 (8.1%) of broiler flocks examined. Pathologic lesions, hemorrhages, and mononuclear infiltrations were predominantly observed in tracheas and to a lesser extent in the lungs and a few in kidneys. A phylogenetic tree based on partial S1 sequences of the detected AvCoV-IBVs (including isolates) revealed that 1) viruses detected in five broiler flocks were similar to the IBV vaccines Ma5, H120, M41; 2) viruses detected in 24 broiler flocks were similar to those previously reported from Turkey and to Israel variant-2 strains; 3) viruses detected in seven layer flocks were different from those found in any of the broiler flocks but similar to viruses previously reported from Iran, India, and China (similar to Israel variant-1 and 4/91 serotypes); and 4) that the AVCoV-IBV, Israeli variant-2 strain, found to be circulating in Turkey appears to be undergoing molecular evolution. In conclusion, genetically different AvCoV-IBV strains, including vaccine-like strains, based on their partial S1 sequence, are circulating in broiler and layer chicken flocks in Turkey and the Israeli variant-2 strain is undergoing evolution. © 2016 American Association of Avian Pathologists
    corecore