3 research outputs found

    Broadband Power Line Communication in Railway Traction Lines: A Survey

    Get PDF
    Power line communication (PLC) is a technology that exploits existing electrical transmission and distribution networks as guiding structures for electromagnetic signal propagation. This facilitates low-rate data transmission for signaling and control operations. As the demand in terms of data rate has greatly increased in the last years, the attention paid to broadband PLC (BPLC) has also greatly increased. This concept also extended to railways as broadband traction power line communication (BTPLC), aiming to offer railway operators an alternative data network in areas where other technologies are lacking. However, BTPLC implementation faces challenges due to varying operating scenarios like urban, rural, and galleries. Hence, ensuring coverage and service continuity demands the suitable characterization of the communication channel. In this regard, the scientific literature, which is an indicator of the body of knowledge related to BTPLC systems, is definitely poor if compared to that addressed to BPLC systems installed on the electrical transmission and distribution network. The relative papers dealing with BTPLC systems and focusing on the characterization of the communication channel show some theoretical approaches and, rarely, measurements guidelines and experimental results. In addition, to the best of the author's knowledge, there are no surveys that comprehensively address these aspects. To compensate for this lack of information, a survey of the state of the art concerning BTPLC systems and the measurement methods that assist their installation, assessment, and maintenance is presented. The primary goal is to provide the interested readers with a thorough understanding of the matter and identify the current research gaps, in order to drive future research towards the most significant issues

    Wearable Brain-Computer Interfaces based on Steady-State Visually Evoked Potentials and Augmented Reality: a Review

    Get PDF
    Brain–computer interfaces (BCIs) are an integration of hardware and software communication systems that allow a direct communication path between the human brain and external devices. Among the existing BCI paradigms, steady-state visually evoked potentials (SSVEPs) have gained momentum in the development of noninvasive BCI applications as they are characterized by adequate signal-to-noise ratio (SNR) and information transfer rate (ITR). In recent years, the adoption of augmented reality (AR) head-mounted displays (HMDs) to render the flickering stimuli necessary for SSVEPs elicitation has become an attractive alternative to traditional computer screens (CSs). In fact, the increase in system wearability anticipates the possibility of adopting BCIs in contexts other than research laboratory. This has contributed to a steadily-increasing interest in BCIs, as also confirmed by the recent literature dedicated to the topic. In this evolving scenario, this review intends to provide a comprehensive picture of the current state-of-the-art in relation to the latest advancement of wearable BCIs based on SSVEPs classification and AR technology. The goal is to provide the reader with a systematic comparison of different technological solutions realized over the last years, thus making future research in this direction more efficient

    Infrared Thermography for Real-Time Assessment of the Effectiveness of Scoliosis Braces

    No full text
    This work proposes an innovative method, based on the use of low-cost infrared thermography (IRT) instrumentation, to assess in real time the effectiveness of scoliosis braces. Establishing the effectiveness of scoliosis braces means deciding whether the pressure exerted by the brace on the patient’s back is adequate for the intended therapeutic purpose. Traditionally, the evaluation of brace effectiveness relies on empirical, qualitative assessments carried out by orthopedists during routine follow-up examinations. Hence, it heavily depends on the expertise of the orthopedists involved. In the state of the art, the only objective methods used to confirm orthopedists’ opinions are based on the evaluation of how scoliosis progresses over time, often exposing people to ionizing radiation. To address these limitations, the method proposed in this work aims to provide a real-time, objective assessment of the effectiveness of scoliosis braces in a non-harmful way. This is achieved by exploiting the thermoelastic effect and correlating temperature changes on the patient’s back with the mechanical pressure exerted by the braces. A system based on this method is implemented and then validated through an experimental study on 21 patients conducted at an accredited orthopedic center. The experimental results demonstrate a classification accuracy slightly below 70% in discriminating between adequate and inadequate pressure, which is an encouraging result for further advancement in view of the clinical use of such systems in orthopedic centers
    corecore