245 research outputs found

    Nonrepetitive Colourings of Planar Graphs with O(logn)O(\log n) Colours

    Get PDF
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path for which the first half of the path is assigned the same sequence of colours as the second half. The \emph{nonrepetitive chromatic number} of a graph GG is the minimum integer kk such that GG has a nonrepetitive kk-colouring. Whether planar graphs have bounded nonrepetitive chromatic number is one of the most important open problems in the field. Despite this, the best known upper bound is O(n)O(\sqrt{n}) for nn-vertex planar graphs. We prove a O(logn)O(\log n) upper bound

    Strip Planarity Testing of Embedded Planar Graphs

    Get PDF
    In this paper we introduce and study the strip planarity testing problem, which takes as an input a planar graph G(V,E)G(V,E) and a function γ:V{1,2,,k}\gamma:V \rightarrow \{1,2,\dots,k\} and asks whether a planar drawing of GG exists such that each edge is monotone in the yy-direction and, for any u,vVu,v\in V with γ(u)<γ(v)\gamma(u)<\gamma(v), it holds y(u)<y(v)y(u)<y(v). The problem has strong relationships with some of the most deeply studied variants of the planarity testing problem, such as clustered planarity, upward planarity, and level planarity. We show that the problem is polynomial-time solvable if GG has a fixed planar embedding.Comment: 24 pages, 12 figures, extended version of 'Strip Planarity Testing' (21st International Symposium on Graph Drawing, 2013

    Optimal Morphs of Convex Drawings

    Get PDF
    We give an algorithm to compute a morph between any two convex drawings of the same plane graph. The morph preserves the convexity of the drawing at any time instant and moves each vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically optimal in the worst case.Comment: To appear in SoCG 201

    On Planar Greedy Drawings of 3-Connected Planar Graphs

    Get PDF
    A graph drawing is greedy if, for every ordered pair of vertices (x,y), there is a path from x to y such that the Euclidean distance to y decreases monotonically at every vertex of the path. Greedy drawings support a simple geometric routing scheme, in which any node that has to send a packet to a destination "greedily" forwards the packet to any neighbor that is closer to the destination than itself, according to the Euclidean distance in the drawing. In a greedy drawing such a neighbor always exists and hence this routing scheme is guaranteed to succeed. In 2004 Papadimitriou and Ratajczak stated two conjectures related to greedy drawings. The greedy embedding conjecture states that every 3-connected planar graph admits a greedy drawing. The convex greedy embedding conjecture asserts that every 3-connected planar graph admits a planar greedy drawing in which the faces are delimited by convex polygons. In 2008 the greedy embedding conjecture was settled in the positive by Leighton and Moitra. In this paper we prove that every 3-connected planar graph admits a planar greedy drawing. Apart from being a strengthening of Leighton and Moitra\u27s result, this theorem constitutes a natural intermediate step towards a proof of the convex greedy embedding conjecture

    Relaxing the Constraints of Clustered Planarity

    Full text link
    In a drawing of a clustered graph vertices and edges are drawn as points and curves, respectively, while clusters are represented by simple closed regions. A drawing of a clustered graph is c-planar if it has no edge-edge, edge-region, or region-region crossings. Determining the complexity of testing whether a clustered graph admits a c-planar drawing is a long-standing open problem in the Graph Drawing research area. An obvious necessary condition for c-planarity is the planarity of the graph underlying the clustered graph. However, such a condition is not sufficient and the consequences on the problem due to the requirement of not having edge-region and region-region crossings are not yet fully understood. In order to shed light on the c-planarity problem, we consider a relaxed version of it, where some kinds of crossings (either edge-edge, edge-region, or region-region) are allowed even if the underlying graph is planar. We investigate the relationships among the minimum number of edge-edge, edge-region, and region-region crossings for drawings of the same clustered graph. Also, we consider drawings in which only crossings of one kind are admitted. In this setting, we prove that drawings with only edge-edge or with only edge-region crossings always exist, while drawings with only region-region crossings may not. Further, we provide upper and lower bounds for the number of such crossings. Finally, we give a polynomial-time algorithm to test whether a drawing with only region-region crossings exist for biconnected graphs, hence identifying a first non-trivial necessary condition for c-planarity that can be tested in polynomial time for a noticeable class of graphs
    corecore