1,821 research outputs found

    A new Q-matrix in the Eight-Vertex Model

    Full text link
    We construct a QQ-matrix for the eight-vertex model at roots of unity for crossing parameter η=2mK/L\eta=2mK/L with odd LL, a case for which the existing constructions do not work. The new QQ-matrix \Q depends as usual on the spectral parameter and also on a free parameter tt. For t=0t=0 \Q has the standard properties. For t0t\neq 0, however, it does not commute with the operator SS and not with itself for different values of the spectral parameter. We show that the six-vertex limit of \Q(v,t=iK'/2) exists.Comment: 10 pages section on quasiperiodicity added, typo corrected, published versio

    New Q matrices and their functional equations for the eight vertex model at elliptic roots of unity

    Full text link
    The Q matrix invented by Baxter in 1972 to solve the eight vertex model at roots of unity exists for all values of N, the number of sites in the chain, but only for a subset of roots of unity. We show in this paper that a new Q matrix, which has recently been introduced and is non zero only for N even, exists for all roots of unity. In addition we consider the relations between all of the known Q matrices of the eight vertex model and conjecture functional equations for them.Comment: 20 pages, 2 Postscript figure

    The Q-operator and Functional Relations of the Eight-vertex Model at Root-of-unity η=2mKN\eta = \frac{2m K}{N} for odd N

    Full text link
    Following Baxter's method of producing Q_{72}-operator, we construct the Q-operator of the root-of-unity eight-vertex model for the crossing parameter η=2mKN\eta = \frac{2m K}{N} with odd NN where Q_{72} does not exist. We use this new Q-operator to study the functional relations in the Fabricius-McCoy comparison between the root-of-unity eight-vertex model and the superintegrable N-state chiral Potts model. By the compatibility of the constructed Q-operator with the structure of Baxter's eight-vertex (solid-on-solid) SOS model, we verify the set of functional relations of the root-of-unity eight-vertex model using the explicit form of the Q-operator and fusion weights of SOS model.Comment: Latex 28 page; Typos corrected, minor changes in presentation, References added and updated-Journal versio

    COMPLETE SOLUTION OF THE XXZ-MODEL ON FINITE RINGS. DYNAMICAL STRUCTURE FACTORS AT ZERO TEMPERATURE.

    Full text link
    The finite size effects of the dynamical structure factors in the XXZ-model are studied in the euclidean time (τ)(\tau)-representation. Away from the critical momentum p=πp=\pi finite size effects turn out to be small except for the large τ\tau limit. The large finite size effects at the critical momentum p=πp=\pi signal the emergence of infrared singularities in the spectral (ω)(\omega)-representation of the dynamical structure factors.Comment: PostScript file with 12 pages + 11 figures uuencoded compresse

    XXZ Bethe states as highest weight vectors of the sl2sl_2 loop algebra at roots of unity

    Full text link
    We show that every regular Bethe ansatz eigenvector of the XXZ spin chain at roots of unity is a highest weight vector of the sl2sl_2 loop algebra, for some restricted sectors with respect to eigenvalues of the total spin operator SZS^Z, and evaluate explicitly the highest weight in terms of the Bethe roots. We also discuss whether a given regular Bethe state in the sectors generates an irreducible representation or not. In fact, we present such a regular Bethe state in the inhomogeneous case that generates a reducible Weyl module. Here, we call a solution of the Bethe ansatz equations which is given by a set of distinct and finite rapidities {\it regular Bethe roots}. We call a nonzero Bethe ansatz eigenvector with regular Bethe roots a {\it regular Bethe state}.Comment: 40pages; revised versio

    On Some Octocorallia (Alcyonacea) from Hong Kong, with Description of a New Species, Paraminabea rubeusa.

    Get PDF
    v. ill. 23 cm.QuarterlyOctocorals from Hong Kong were studied at 18 sites down to a depth of 25 m in 1999. The collection of @90 specimens yielded nine species distributed in seven genera of the families Alcyoniidae, Nephtheidae, and Xeniidae (all are new zoogeographical records for Hong Kong), plus ca. 70 samples of azooxanthellate octocorals of the genera Dendronephthya (family Nephtheidae), Chironephthya, and Nephthyigorgia (family Nidaliidae), which were not identified to species level. The collection included Paraminabea rubeusa Benayahu & Fabricius, n. sp., which is described here. The impoverished nature of the zooxanthellate octocorals is reflected in the low number of species found in the families Alcyoniidae and Xeniidae (seven and one, respectively), families that typically contribute a high proportion of species in the Indo-Pacific region. It is crucial to implement effective conservation policies in Hong Kong to preserve its remaining zooxanthellate octocoral species and thereby prevent the local extinction of these species, including the newly described Sarcophyton tumulosum Benayahu & Ofwegen, 2009, and Lobophytum mortoni Benayahu & Ofwegen, 2009, which may be endemic to the region

    The Q-operator for Root-of-Unity Symmetry in Six Vertex Model

    Full text link
    We construct the explicit QQ-operator incorporated with the sl2sl_2-loop-algebra symmetry of the six-vertex model at roots of unity. The functional relations involving the QQ-operator, the six-vertex transfer matrix and fusion matrices are derived from the Bethe equation, parallel to the Onsager-algebra-symmetry discussion in the superintegrable NN-state chiral Potts model. We show that the whole set of functional equations is valid for the QQ-operator. Direct calculations in certain cases are also given here for clearer illustration about the nature of the QQ-operator in the symmetry study of root-of-unity six-vertex model from the functional-relation aspect.Comment: Latex 26 Pages; Typos and small errors corrected, Some explanations added for clearer presentation, References updated-Journal version with modified labelling of sections and formula

    An elliptic current operator for the 8 vertex model

    Full text link
    We compute the operator which creates the missing degenerate states in the algebraic Bethe ansatz of the 8 vertex model at roots of unity and relate it to the concept of an elliptic current operator. We find that in sharp contrast with the corresponding formalism in the six-vertex model at roots of unity the current operator is not nilpotent with the consequence that in the construction of degenerate eigenstates of the transfer matrix an arbitrary number of exact strings can be added to the set of regular Bethe roots. Thus the original set of free parameters {s,t} of an eigenvector of T is enlarged to become {s,t,\lambda_{c,1}, ..., \lambda_{c,n}\} with arbitrary string centers \lambda_{c,j} and arbitrary n.Comment: 16 pages, Latex typographic errors corrected, text added, reference added, accepted by Journal of Physics A,Mathematical and Genera

    World heritage values of Magnetic Island: the marine system

    Get PDF
    Magnetic Island is a high continental island that lies approximately 8 kilometres north of the city of Townsville on the north-western side of Cleveland Bay. It is separated from the mainland by the shallow (<15 m) West Channel. Due to its location in Cleveland Bay, the marine habitats of Magnetic Island are diverse. They are characterised by gradients ranging from very wave-protected shallow muddy environments on the leeward sides to wave-exposed windward coastlines with clearer and deeper water. Associated with the high environmental diversity is a broad range of marine communities, ranging from those that are tolerant of muddy, low light conditions to those that are typically found in less turbid environments
    corecore