41 research outputs found
Nonclassical statistics of intracavity coupled waveguides: the quantum optical dimer
A model is proposed where two nonlinear waveguides are contained
in a cavity suited for second-harmonic generation. The evanescent wave coupling
between the waveguides is considered as weak, and the interplay between this
coupling and the nonlinear interaction within the waveguides gives rise to
quantum violations of the classical limit. These violations are particularly
strong when two instabilities are competing, where twin-beam behavior is found
as almost complete noise suppression in the difference of the fundamental
intensities. Moreover, close to bistable transitions perfect twin-beam
correlations are seen in the sum of the fundamental intensities, and also the
self-pulsing instability as well as the transition from symmetric to asymmetric
states display nonclassical twin-beam correlations of both fundamental and
second-harmonic intensities. The results are based on the full quantum Langevin
equations derived from the Hamiltonian and including cavity damping effects.
The intensity correlations of the output fields are calculated
semi-analytically using a linearized version of the Langevin equations derived
through the positive-P representation. Confirmation of the analytical results
are obtained by numerical simulations of the nonlinear Langevin equations
derived using the truncated Wigner representation.Comment: 15 pages, 8 figures, submitted to Phys. Rev.
Biomarkers of Chlorpyrifos Exposure and Effect in Egyptian Cotton Field Workers
BACKGROUND: Chlorpyrifos (CPF), a widely used organophosphorus pesticide (OP), is metabolized to CPF-oxon, a potent cholinesterase (ChE) inhibitor, and trichloro-2-pyridinol (TCPy). Urinary TCPy is often used as a biomarker for CPF exposure, whereas blood ChE activity is considered an indicator of CPF toxicity. However, whether these biomarkers are dose related has not been studied extensively in populations with repeated daily OP exposures. OBJECTIVE: We sought to determine the relationship between blood ChE and urinary TCPy during repeated occupational exposures to CPF. METHODS: Daily urine samples and weekly blood samples were collected from pesticide workers (n = 38) in Menoufia Governorate, Egypt, before, during, and after 9–17 consecutive days of CPF application to cotton fields. We compared blood butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) activities with the respective urinary TCPy concentrations in each worker. RESULTS: Average TCPy levels during the middle of a 1- to 2-week CPF application period were significantly higher in pesticide applicators (6,437 μg/g creatinine) than in technicians (184 μg/g) and engineers (157 μg/g), both of whom are involved in supervising the application process. We observed a statistically significant inverse correlation between urinary TCPy and blood BuChE and AChE activities. The no-effect level (or inflection point) of the exposure–effect relationships has an average urinary TCPy level of 114 μg/g creatinine for BuChE and 3,161 μg/g creatinine for AChE. CONCLUSIONS: Our findings demonstrate a dose–effect relationship between urinary TCPy and both plasma BuChE and red blood cell AChE in humans exposed occupationally to CPF. These findings will contribute to future risk assessment efforts for CPF exposure