46 research outputs found

    ProbMetab: an R package for Bayesian probabilistic annotation of LC-MS based metabolomics

    Full text link
    We present ProbMetab, an R package which promotes substantial improvement in automatic probabilistic LC-MS based metabolome annotation. The inference engine core is based on a Bayesian model implemented to: (i) allow diverse source of experimental data and metadata to be systematically incorporated into the model with alternative ways to calculate the likelihood function and; (ii) allow sensitive selection of biologically meaningful biochemical reactions databases as Dirichlet-categorical prior distribution. Additionally, to ensure result interpretation by system biologists, we display the annotation in a network where observed mass peaks are connected if their candidate metabolites are substrate/product of known biochemical reactions. This graph can be overlaid with other graph-based analysis, such as partial correlation networks, in a visualization scheme exported to Cytoscape, with web and stand alone versions. ProbMetab was implemented in a modular fashion to fit together with established upstream (xcms, CAMERA, AStream, mzMatch.R, etc) and downstream R package tools (GeneNet, RCytoscape, DiffCorr, etc). ProbMetab, along with extensive documentation and case studies, is freely available under GNU license at: http://labpib.fmrp.usp.br/methods/probmetab/.Comment: Manuscript to be submitted very soon. 7 pages, 3 color figures. There is a companion material, the two case studies, which are going to be posted here together with the main text in next updated versio

    Physiological and Molecular Timing of the Glucose to Acetate Transition in Escherichia coli

    Full text link
    International audienceThe glucose-acetate transition in Escherichia coli is a classical model of metabolic adaptation. Here, we describe the dynamics of the molecular processes involved in this metabolic transition, with a particular focus on glucose exhaustion. Although changes in the metabolome were observed before glucose exhaustion, our results point to a massive reshuffling at both the transcriptome and metabolome levels in the very first min following glucose exhaustion. A new transcriptional pattern, involving a change in genome expression in one-sixth of the E. coli genome, was established within 10 min and remained stable until the acetate was completely consumed. Changes in the metabolome took longer and stabilized 40 min after glucose exhaustion. Integration of multi-omics data revealed different modifications and timescales between the transcriptome and metabolome, but both point to a rapid adaptation of less than an hour. This work provides detailed information on the order, timing and extent of the molecular and physiological events that occur during the glucose-acetate transition and that are of particular interest for the development of dynamic models of metabolism

    Absolute quantification of ppGpp and pppGpp by double-spike isotope dilution ion chromatography–high-resolution mass spectrometry

    Full text link
    Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine S'-triphosphate 3'-diphosphate (pppGpp) play a central role in the adaptation of bacterial and plant cells to nutritional and environmental stresses and in bacterial resistance to antibiotics. These compounds have historically been detected and quantified by two-dimensional thin-layer chromatography of P-32-radiolabeled nucleotides. We report a new method to quantify ppGpp and pppGpp in complex biochemical matrix using ion chromatography coupled to high-resolution mass spectrometry. The method is based on isotopic dilution mass spectrometry (IDMS) using C-13 to accurately quantify the nucleotides. However, the loss of a phosphate group from pppGpp during the sample preparation process results in the erroneous quantification of ppGpp. This bias was corrected by adding an extra N-15 isotope dilution dimension. This double-spike IDMS method was applied to quantify the ppGpp and pppGpp in Escherichia coli and in a mutant strain deleted for gppA (encoding the ppGpp phosphohydrolase) before and after exposure of both strains to serine hydroxamate, known to trigger the accumulation of these nucleotides

    Metabolic network analysis during fed-batch cultivation of Corynebacterium glutamicum for pantothenic acid production: first quantitative data and analysis of by-product formation

    Full text link
    International audienceA first generation genetically modified strain of Corynebacterium glutamicum has been assessed for its potential to synthesise and accumulate the vitamin pantothenic acid in the medium using fed-batch cultivation technology, with biomass concentration controlled by isoleucine limitation. Kinetic analysis of specific rates throughout the process has been used to model carbon flux through both central metabolism and the specific pathways involved in product formation. Flux towards pantothenic acid is potentially high but much of this flux is dissipated as by-products within associated pathways, notably linked to amino acid synthesis. The major limitation of vitamin production in this strain is linked to the tenfold higher flux of keto-isovalerate towards valine rather than pantothenic acid. Attempts to modify this ratio by imposing nitrogen limitation provoked carbon overflow as unidentified non-nitrogenous compounds. The observed accumulation of glycine suggests that the flux towards pantothenate production may by limited by the rate of the pathway intermediate (5,10-methylene-tetrahydrofolate) regeneration

    Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources

    Full text link
    International audienceA batch fermentation strategy using Xanthomonas campestris ATCC 13951 for xanthan gum production has been established in which all essential medium components are supplied at the onset. This has been achieved using sucrose as sole sugar feedstock. Sequential consumption of nitrogen sources (soybean hydrolysates, ammonium and nitrate salts) was observed to facilitate the further optimisation of the medium. Biomass accumulation was limited by phosphate availability. Xanthan yields of more than 60% (grams of xanthan per gram of sugar) have been obtained with constant acetyl content. However, pyruvyl substitution decreased as the growth rate declined, due to the metabolic constraintsspecific to phosphate depletion. High rates of carbon conversion into xanthan were observed throughout the culture and the ATP/ADP ratio was not affected by the decline in the specific growth rate

    Solid/gas biocatalysis: an appropriate tool to study the influence of organic components on kinetics of lipase-catalyzed alcoholysis

    Full text link
    International audienceThe influence of the addition of an extra component in a gaseous reaction medium, on the kinetics of alcoholysis of methyl propionate and n-propanol catalyzed by immobilized lipase B from Candida antarctica was studied in a continuous solid/gas reactor. In this reactor, the solid phase is composed of a packed enzymatic sample, which is percolated by gaseous nitrogen, simultaneously carrying gaseous substrates and additional components to the enzyme while removing reaction products. The system permits to set thermodynamic activity of all gaseous components (substrates or not) independently at the desired values. This allows in particular to study the influence of an extra added component at a constant thermodynamic activity value, contrary to classical solid/liquid system, which involves large variations of thermodynamic activity of added solvent, when performing full kinetic studies. Alcohol inhibition constant (K(I)) and methyl propionate and propanol dissociation constants (K(MP) and K(P)) have been determined in the solid/gas reactor in the presence of 2-methyl-2-butanol, and compared with values previously obtained in the absence of added component and in the presence of water. Complementary experiments were carried out in the presence of an apolar compound (hexane) and led to the conclusion that the effect of added organic component on lipase-catalyzed alcoholysis is related to their competitive inhibitory character towards first substrate methyl propionate. The comparison of data obtained in liquid or with gaseous 2-methyl-2-butanol shows that lower K(MP) and K(I) are found in gaseous medium, which would correspond on the one hand to a lower acylation rate k(2), and on the other hand to a higher binding rate k(1) between substrate and free enzyme in gaseous medium

    Acetate Exposure Determines the Diauxic Behavior of Escherichia coli during the Glucose-Acetate Transition

    Full text link
    Growth of Escherichia coli on glucose in batch culture is accompanied by the excretion of acetate, which is consumed by the cells when glucose is exhausted. This glucose-acetate transition is classically described as a diauxie (two successive growth stages). Here, we investigated the physiological and metabolic properties of cells after glucose exhaustion through the analysis of growth parameters and gene expression. We found that E. coli cells grown on glucose in batch culture produce acetate and consume it after glucose exhaustion but do not grow on acetate. Acetate is catabolized, but key anabolic genes-such as the genes encoding enzymes of the glyoxylate shunt-are not upregulated, hence preventing growth. Both the induction of the latter anabolic genes and growth were observed only after prolonged exposure to low concentrations of acetate and could be accelerated by high acetate concentrations. We postulate that such decoupling between acetate catabolism and acetate anabolism might be an advantage for the survival of E. coli in the ever-changing environment of the intestine. IMPORTANCE The glucose-acetate transition is a valuable experimental model for comprehensive investigations of metabolic adaptation and a current paradigm for developing modeling approaches in systems microbiology. Yet, the work reported in our paper demonstrates that the metabolic behavior of Escherichia coli during the glucose-acetate transition is much more complex than what has been reported so far. A decoupling between acetate catabolism and acetate anabolism was observed after glucose exhaustion, which has not been reported previously. This phenomenon could represent a strategy for optimal utilization of carbon resources during colonization and persistence of E. coli in the gut and is also of significant interest for biotechnological applications

    Determination of carbon labeling distribution of intracellular metabolites from single fragment ions by ion chromatography tandem mass spectrometry

    Full text link
    International audienceLiquid chromatography tandem mass spectrometry coupling is a highly sensitive and specific technique allowing molecule detection in the femtomolar range. This article introduces a straightforward approach to apply this technique in 13C metabolic flux analysis. Based on a theoretical analysis of the correlation between molecule ions and corresponding fragments, a method was developed to determine the carbon labeling of intracellular metabolites without increasing the number of measurements per metabolite compared with direct molecule ion analysis. The method was applied to phosphorylated metabolites because their fragmentation results in high yields of [PO3]− and/or [H2PO4]− ions. Comparing the accuracy of the carbon labeling determination of phosphorylated metabolites between direct analysis of the molecule ions with that of corresponding phosphate fragment ions, it could be demonstrated that the introduced approach resulted in significantly higher accuracy and sensitivity for all tested metabolites. When applying the techniques to Escherichia coli cell extracts, 2 ÎŒg cell dry weight per injection was sufficient to determine the natural abundances of the carbon fractions m and m + 1 from six phosphorylated metabolites with high accuracy, predestining the approach for very small cultivation volumes in the microliter range
    corecore