65 research outputs found
Normal-Mixture-of-Inverse-Gamma Priors for Bayesian Regularization and Model Selection in Structured Additive Regression Models
In regression models with many potential predictors, choosing an appropriate subset of covariates and their interactions at the same time as determining whether linear or more flexible functional forms are required is a challenging and important task. We propose a spike-and-slab prior structure in order to include or exclude single coefficients as well as blocks of coefficients associated
with factor variables, random effects or basis expansions
of smooth functions. Structured additive models with this prior structure are estimated with Markov Chain Monte Carlo using a redundant multiplicative parameter expansion. We discuss shrinkage properties of the novel prior induced by the redundant parameterization, investigate its sensitivity to hyperparameter settings and compare performance of the proposed method in terms of model selection, sparsity recovery, and estimation error for Gaussian, binomial and Poisson responses on real and simulated data sets with that of component-wise boosting and other approaches
Locally Adaptive Bayesian P-Splines with a Normal-Exponential-Gamma Prior
The necessity to replace smoothing approaches with a global amount of smoothing arises in a variety of situations such as effects with highly varying curvature or effects with discontinuities. We present an implementation of locally adaptive spline smoothing using a class of heavy-tailed shrinkage priors. These priors utilize scale mixtures of normals with locally varying exponential-gamma distributed variances for the differences of the P-spline coefficients. A fully Bayesian hierarchical structure is derived with inference about the posterior being based on Markov Chain Monte Carlo techniques. Three increasingly flexible and automatic approaches are introduced to estimate the spatially varying structure of the variances. In an extensive simulation study, the performance of our approach on a number of benchmark functions is shown to be at least equivalent, but mostly better than previous approaches and fits both functions of smoothly varying complexity and discontinuous functions well. Results from two applications also reflecting these two situations support the simulation results
spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R
The R package spikeSlabGAM implements Bayesian variable selection, model
choice, and regularized estimation in (geo-)additive mixed models for Gaussian,
binomial, and Poisson responses. Its purpose is to (1) choose an appropriate
subset of potential covariates and their interactions, (2) to determine whether
linear or more flexible functional forms are required to model the effects of
the respective covariates, and (3) to estimate their shapes. Selection and
regularization of the model terms is based on a novel spike-and-slab-type prior
on coefficient groups associated with parametric and semi-parametric effects
Generalized Functional Additive Mixed Models
We propose a comprehensive framework for additive regression models for
non-Gaussian functional responses, allowing for multiple (partially) nested or
crossed functional random effects with flexible correlation structures for,
e.g., spatial, temporal, or longitudinal functional data as well as linear and
nonlinear effects of functional and scalar covariates that may vary smoothly
over the index of the functional response. Our implementation handles
functional responses from any exponential family distribution as well as many
others like Beta- or scaled non-central -distributions. Development is
motivated by and evaluated on an application to large-scale longitudinal
feeding records of pigs. Results in extensive simulation studies as well as
replications of two previously published simulation studies for generalized
functional mixed models demonstrate the good performance of our proposal. The
approach is implemented in well-documented open source software in the "pffr()"
function in R-package "refund"
Penalized Likelihood and Bayesian Function Selection in Regression Models
Challenging research in various fields has driven a wide range of
methodological advances in variable selection for regression models with
high-dimensional predictors. In comparison, selection of nonlinear functions in
models with additive predictors has been considered only more recently. Several
competing suggestions have been developed at about the same time and often do
not refer to each other. This article provides a state-of-the-art review on
function selection, focusing on penalized likelihood and Bayesian concepts,
relating various approaches to each other in a unified framework. In an
empirical comparison, also including boosting, we evaluate several methods
through applications to simulated and real data, thereby providing some
guidance on their performance in practice
Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models
Structured additive regression provides a general framework for complex
Gaussian and non-Gaussian regression models, with predictors comprising
arbitrary combinations of nonlinear functions and surfaces, spatial effects,
varying coefficients, random effects and further regression terms. The large
flexibility of structured additive regression makes function selection a
challenging and important task, aiming at (1) selecting the relevant
covariates, (2) choosing an appropriate and parsimonious representation of the
impact of covariates on the predictor and (3) determining the required
interactions. We propose a spike-and-slab prior structure for function
selection that allows to include or exclude single coefficients as well as
blocks of coefficients representing specific model terms. A novel
multiplicative parameter expansion is required to obtain good mixing and
convergence properties in a Markov chain Monte Carlo simulation approach and is
shown to induce desirable shrinkage properties. In simulation studies and with
(real) benchmark classification data, we investigate sensitivity to
hyperparameter settings and compare performance to competitors. The flexibility
and applicability of our approach are demonstrated in an additive piecewise
exponential model with time-varying effects for right-censored survival times
of intensive care patients with sepsis. Geoadditive and additive mixed logit
model applications are discussed in an extensive appendix
A general framework for functional regression modelling
Researchers are increasingly interested in regression models for functional data. This article discusses a comprehensive framework for additive (mixed) models for functional responses and/or functional covariates based on the guiding principle of reframing functional regression in terms of corresponding models for scalar data, allowing the adaptation of a large body of existing methods for these novel tasks. The framework encompasses many existing as well as new models. It includes regression for generalized' functional data, mean regression, quantile regression as well as generalized additive models for location, shape and scale (GAMLSS) for functional data. It admits many flexible linear, smooth or interaction terms of scalar and functional covariates as well as (functional) random effects and allows flexible choices of basesparticularly splines and functional principal componentsand corresponding penalties for each term. It covers functional data observed on common (dense) or curve-specific (sparse) grids. Penalized-likelihood-based and gradient-boosting-based inference for these models are implemented in R packages refund and FDboost, respectively. We also discuss identifiability and computational complexity for the functional regression models covered. A running example on a longitudinal multiple sclerosis imaging study serves to illustrate the flexibility and utility of the proposed model class. Reproducible code for this case study is made available online
- …